Типы источников света – Источники света – виды, осветительные приборы

Содержание

рассказываем о том, какие бывают лампы

Источники света — один из самых массовых товаров. Ежегодно производят и потребляют миллиарды ламп, значительную долю которых пока составляют лампы накаливания и галогенные лампы.

Стремительно растёт потребление современных ламп — компактных люминесцентных и светодиодных. Происходящие изменения в качестве дают надежду на то, что источники света станут важным инструментом дизайнера, архитектора, проектировщика.

Об освещённости и цветовой температуре света

освещенность и цветовая температура

Ряд параметров ламп определяет насколько они применимы в том или ином проекте.

Световой поток определяет количество света, которое дает лампа (измеряется в люменах). Установленная в люстре лампа накаливания мощностью 100 Вт имеет световой поток 1200 лм, 35-ватная «галогенка» — 600 лм, а натриевая лампа мощностью 100 Вт — 10 000 лм.

У разных типов ламп разная световая отдача, определяющая эффективность преобразования электрической энергии в свет и, следовательно, разную экономическую эффективность применения. Световую отдачу лампы измеряют в лм/Вт (светотехники говорят «люменов с ватта», имея в виду, что каждый ватт потребляемой электроэнергии «преобразуется» в некоторое количество люменов светового потока).

Переходя от количества к качеству, рассмотрим цветовую температуруцв, единица измерения — градус Кельвина) и индекс цветопередачи (Ra). При выборе ламп дизайнер обязательно учитывает цветовую температуру для той или иной установки. Комфортная среда сильно зависит от того, какой свет в помещении «тёплый» или «холодный» (чем выше цветовая температура, тем «холоднее» свет).

Цветопередача — важный параметр, о котором часто забывают. Чем более сплошной и равномерный спектр у лампы, тем различимее цвета предметов в её свете. У Солнца сплошной спектр излучения и наилучшая цветопередача, при этом Тцв

меняется от 6000К в полдень до 1800К в рассветные и закатные часы. Но далеко не все лампы могут сравниться с Солнцем.

Если у искусственных источников теплового излучения сплошной спектр и нет проблем с цветопередачей, то разрядные лампы, имеющие в своем спектре полосы и линии, сильно искажают цвета предметов.

Индекс цветопередачи тепловых источников равен 100, для разрядных он колеблется от 20 до 98. Правда, индекс цветопередачи не даёт сделать вывод о характере передачи цветов, а иногда способен запутать дизайнера. Так, у люминесцентных ламп и у белых светодиодов хорошая цветопередача (Ra=80), но при этом они неудовлетворительно передают некоторые цвета.

Другой крайний случай, когда индекс цветопередачи более 90 — в этом случае некоторые цвета воспроизводятся неестественно насыщенными.

Лампы выходят из строя. Кроме того, световой поток лампы уменьшается в процессе работы. Срок службы — основной эксплуатационный параметр источников света.

Проектируя осветительную установку нельзя забывать об обслуживании, т. к. частая замена ламп увеличивает стоимость эксплуатации и вносит дискомфорт.

Лампы накаливания

характеристики ламп накаливания

Вольфрамовая спираль в колбе разогревается под действием электрического тока. Для сокращения скорости распыления вольфрама и соответственно увеличения срока службы лампы колба наполняется инертным газом. По принципу действия лампа накаливания относится к тепловым источникам света, т. е. значительная доля потребляемой энергии расходуется на тепловое и инфракрасное излучение.

Типичная для ламп накаливания световая отдача 10–15 лм/Вт, а срок службы редко превышает 2000 часов. Достоинства этих ламп: низкая цена и качество света (Т

цв=2700, Ra=100). Сплошной спектр качественно воспроизводит цвета окружающих предметов. Лампы накаливания постепенно вытесняются разрядными источниками света и светодиодными лампами.

Галогенные лампы накаливания

отличие галогенных ламп

Добавление галогенов в колбу лампы накаливания и использование кварцевого стекла позволили сделать серьезный шаг вперёд, получив новый класс источников света — галогенные лампы накаливания. Световая отдача современных ГЛН составляет 30 лм/Вт. Типичное значение цветовой температуры 3000К и индекс цветопередачи 100. «Точечная» форма источника света с помощью отражателей даёт управлять пучком света.

Получающийся при этом искристый свет определил приоритет таких ламп в интерьерном дизайне, где они заняли лидерство. Ещё одно преимущество в том, что количество и качество света лампы постоянно на протяжении срока службы. Популярны низковольтные «галогенки» мощностью 10–75 Вт с отражателем, который фокусирует луч в угле 10–40°.

Недостатки ГЛН очевидны: малая световая отдача, короткий срок службы (в среднем 2000–4000 часов), необходимость использования (для низковольтных) понижающих трансформаторов. Там, где эстетический компонент важнее экономического, с ними приходится мириться.

Люминесцентные лампы

люминисцентные лампы преимущества

Люминесцентные лампы (ЛЛ) — разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, которая наполнена инертным газом и малым количеством ртути. При включении в трубке возникает дуговой разряд, и атомы ртути начинают излучать видимый свет и ультрафиолет. Нанесённый на стенки трубки люминофор под действием ультрафиолетовых лучей излучает видимый свет.

Основа светового потока лампы — излучение люминофора, видимые линии ртути составляют лишь малую часть. Многообразие люминофоров (смесей люминофоров) позволяет получить источники света с различным спектральным составом, который определяет цветовую температуру и индекс цветопередачи.

Люминесцентные лампы дают мягкий, равномерный свет, но его распределением в пространстве трудно управлять из-за большой поверхности излучения. Для работы люминесцентных ламп необходима специальная пускорегулирующая аппаратура. Лампы долговечны — срок службы до 20 000 часов.

Световая отдача и срок службы сделали их самыми распространёнными источниками света в офисном освещении.

Компактные люминесцентные лампы

энергосберегающие лампы люминисцентные

Развитие люминесцентных ламп привели к созданию компактных люминесцентных ламп (КЛЛ). Это источник света похожий на миниатюрную люминесцентную, иногда с встроенным электронным пускорегулирующим аппаратом и резьбовым цоколем Е27 (для непосредственной замены ламп накаливания), Е14 и др.

Различие заключается в уменьшенном диаметре трубки и использовании другого типа люминофора. Компактная люминесцентная лампа может с успехом заменить лампы накаливания.

Разрядные лампы высокого давления

лампы высокого давления

Последние разработки позволяют использовать для освещения разрядные лампы высокого давления. По ряду показателей подходят металлогалогенные (МГЛ). У этих ламп во внешней колбе размещается горелка с излучающие добавки. В горелке присутствует некоторое количество ртути, галоген (чаще йод) и атомы химических элементов (Tl, In, Th, Na, Li и др.).

Сочетание излучающих добавок достигает интересных параметров: высокая световая отдача (до 100 лм/Вт), отличная цветопередача Rа=80–98, диапазон Тцв от 3000 К до 6000 К, средний срок службы до 15 000 часов. Для работы этих ламп требуется пускорегулирующие аппараты и специальные светильники. Рекомендуется использовать эти источники для освещения помещений с большой площадью, с высокими потолками, просторных залов.

Светодиодные лампы

виды светодиодных ламп

Светодиоды — полупроводниковые светоизлучающие приборы, называют источниками света будущего. Если говорить о современном состоянии «твердотельной светотехники», можно утверждать, что она вышла из периода младенчества. Достигнутые характеристики светодиодов (световая отдача до 140 лм/Вт, Rа=80–95, срок службы 70 000 часов) уже обеспечили лидерство во многих областях.

Диапазон мощностей светодиодных источников, реализация в лампах разных типов цоколей, управление лампами позволили в короткий срок удовлетворить растущие требования к источникам света. Главными преимуществами светодиодов остаются компактные размеры и управления цветовыми параметрами (цветодинамика).

www.o-svet.ru

Искусственные источники света: типы источников света и их основные характеристики, Особенности применения газоразрядных энергосберегающих источников света. Светильники: назначение, типы, особенности применения. Искусственные источники света. Шумовое (акустическое) загрязнение

Похожие главы из других работ:

Безопасность жизнедеятельности в разных сферах

Вопрос 1: «Охарактеризовать источники света и применяемые осветительные приборы»

С физической точки зрения любой источник света — это скопление множества возбуждённых или непрерывно возбуждаемых атомов. Каждый отдельный атом вещества является генератором световой волны…

Безопасность жизнедеятельности на производстве

Виды производственного освещения. Виды источников света и светильников

Источники света, применяемые для искусственного освещения, делят на две группы — газоразрядные лампы и лампы накаливания. Лампы накаливания относятся к источникам света теплового излучения…

Искусственное освещение рабочего места

2. Особенности субъективного восприятия света

Зрение человека позволяет воспринимать форму, цвет, яркость и движение окружающих предметов. До 90 % информации об окружающем мире человек получает с помощью зрительных органов…

Медико-биологическая характеристика искусственного освещения с учетом класса точности зрительных работ

1. Источники света, осветительные приборы

Источники света, применяемые для искусственного освещения, делят на две группы газоразрядные лампы и лампы накаливания. Лампы накаливания относятся к источникам света теплового излучения…

Организация охраны труда. Экономическая оценка источников света

2. Современные источники света и осветительные приборы: классификация, экономическая оценка

Освещенность — важный фактор производственной и окружающей среды. Для нормальной жизнедеятельности человека крайне важны солнечные лучи, свет, освещение. Напротив, недостаточные уровни…

Освещение выставочной экспозиции

1.2 Использование естественного света в выставочных экспозициях

Как бы ни были удачны композиции выставочных интерьеров и подбор экспонатов, они не будут производить нужного впечатления, пока свет не станет компонентом оформления…

Освещенность производственных помещений металлургического производства

3.Источники искусственного света, их характеристики

В современных осветительных установках, предназначенных для освещения производственных помещений, в качестве источников света применяют лампы накаливания, галогенные и газоразрядные. Лампы накаливания…

Основные требования к производственному освещению

Источники искусственного света

При сравнении источников света друг с другом и при их выборе пользуются следующими характеристиками: 1) электрические характеристики — номинальное напряжение, т. е. напряжение…

Охрана труда на предприятиях

Вопрос 2. Назовите основные источники искусственного света, их преимущества, недостатки, и возможность использования их в полиграфическом производстве.

Искусственное освещение по своему назначению делится на две системы: общее, предназначенное для освещения всего рабочего помещения, и комбинированное, когда к общему освещению добавляется местное освещение…

Проблема обеспечения безопасности человека при использовании световых и звуковых эффектов

7. Мерцание света. Фотосенситивная эпилепсия

Фотосенситивная (светочувствительная) эпилепсия — это такое состояние, при котором мерцающий свет большой интенсивности вызывает эпилептические приступы. Ее иногда называют рефлекторной эпилепсией…

Прогнозирование и разработка мероприятий по предупреждению и ликвидации чрезвычайной ситуации на АГЗС №2 ООО «АКОЙЛ»

1.1 Назначение и типы автомобильных газозаправочных станций

АГЗС предназначены для приема и хранения сжиженного углеводородного газа, а также заправки газобаллонного оборудования автомобиля сжиженным углеводородным газом [1]. Принципиальная технологическая схема АГЗС представлена на рисунке 1.1…

Производственная санитария и гигиена труда

4.1 Основные типы радиоактивных излучений

Основные типы радиоактивных излучений: альфа, бета, нейтронные (группа корпускулярных излучений), рентгеновские и гамма-излучения (группа волновых). Корпускулярные излучения представляют собой потоки невидимых элементарных частиц

trud.bobrodobro.ru

примеры. Использование искусственных источников света. Виды искусственных источников света

Нас всегда и везде окружает свет, так как это неотъемлемая часть жизни. Огонь, солнце, луна или настольная лампа – это все относится к данной категории. Сейчас нашей задачей будет рассмотреть естественные и искусственные источники света.

искусственные источники света

Раньше у людей не было хитроумных будильников и сотовых телефонов, которые помогают нам встать тогда, когда это необходимо. Эту функцию выполняло Солнце. Оно встало – люди начинают работу, село – ложатся отдыхать. Но, со временем, мы научились добывать искусственные источники света, мы поговорим о них в статье более подробно. Начать необходимо с самого главного понятия.

Свет

В общем смысле – это волна (электромагнитная) которая воспринимается органами зрения человека. Но все же есть рамки, которые человек видит (от 380 до 780 нм). До этого идет ультрафиолетовое излучение. Хоть мы его не видим, но наша кожа его воспринимает (загар), после этих рамок идет инфракрасное излучение, некоторые живые организмы его видят, а человеком он воспринимается как тепло.

источники света естественные и искусственные

Теперь разберем такой вопрос: почему свет бывает разного цвета? Все зависит от длины волны, например, фиолетовый цвет образуется пучком волн длины 380 нм, зеленый – 500 нм, а красный – 625. Вообще, основных цветов 7, которые мы можем наблюдать во время такого явления, как радуга. Но многие, особенно искусственные источники света, излучают волны белого цвета. Даже если взять лампочку, которая висит у вас в комнате, с вероятностью 90 процентов, она освещает именно белым светом. Так вот, он получается за счет смешения всех основных цветов:

  • Красного.
  • Оранжевого.
  • Желтого.
  • Зеленого.
  • Голубого.
  • Синий.
  • Фиолетовый.

Их очень легко запомнить, многие используют такие строки: каждый охотник желает знать, где сидит фазан. А первые буквы каждого слова и обозначают цвет, кстати, в радуге они располагаются точно в таком порядке. После того как мы разобрались с самим понятием, предлагаем перейти к вопросу «Источники света естественные и искусственные». Мы подробно разберем каждый вид.

Источники света

Не существует и в наше время ни одной отрасли хозяйства, которая в своем производстве не использовала бы искусственные источники света. Когда же человек впервые занялся производством искусственного освещения? Это было в далеком девятнадцатом веке, а причиной развития отрасли служило изобретение ламп дуговых и накаливания.

искусственные источники света примеры

Источники света естественные и искусственные – это тела, которые способны излучать свет, а точнее, преобразовывать одну энергию в другую. Например, электрический ток в электромагнитную волну. Действующим по этому принципу искусственным источником света является электрическая лампочка, которая так распространена в повседневной жизни.

Мы говорили в прошлом разделе о том, что не весь свет воспринимается нашими органами зрения, но тем не менее источником света является и тот объект, который излучает волны, невидимые нашему глазу.

Классификация

искусственным источником света является

Начнем с того, что все они делятся на два больших класса:

  • Искусственные источники света (светильники, горелки, свечи и так далее).
  • Естественные (свет Солнца, Луны, сияние звезд и прочее).

При этом каждый класс, в свою очередь, делится на группы и подгруппы. Начнем с первых, искусственные источники различают:

  • Тепловые.
  • Люминесцентные.
  • Светодиодные.

Более подробную классификацию обязательно рассмотрим далее. Во второй класс входят следующие:

  • Солнце.
  • Межзвездный газ и сами звезды.
  • Атмосферные разряды.
  • Биолюминесценция.

Естественные источники света

Все объекты, излучающие свет природного происхождения являются натуральными источниками. При этом испускание света может являться как основным, так и вторичным свойством. Если сравнивать природные и искусственные источники света, примеры которых мы уже рассмотрели, то их основное отличие заключается в том, что вторые излучают видимый нашему глазу свет благодаря человеку, а точнее, производству.

искусственные источники света светильники

В первую очередь, что приходит на ум каждому, природным источником является Солнце, являющееся источником света и тепла для всей нашей планеты. Также естественными источниками являются звезды и кометы, электрические разряды (например, молния во время грозы), свечение живых организмов, этот процесс также называют биолюминесценцией (примером являются светлячки, некоторые водные организмы, обитающие на дне и так далее). Природные источники света играют очень важную роль как для человека, так и для других живых организмов.

Виды искусственных источников света

Зачем же нам они нужны? Представьте, как изменится наша жизнь без всем привычных ламп, ночников и тому подобных приборов. В чем заключается назначение искусственного света? В создании благоприятной обстановки и условий видимости для человека, тем самым поддержание здоровья и хорошего самочувствия, уменьшение утомляемости органов зрения.

виды искусственных источников света

Искусственные источники света можно разделить на две, довольно обширные, группы:

  • Общие.
  • Комбинированные.

К примеру, о первой группе, все производственные участки всегда освещаются однотипными лампами, которые расположены на одинаковом расстоянии друг от друга и мощность ламп одинакова. Если говорить о второй группе, то тогда к вышеперечисленным добавляются еще несколько светильников, которые сильнее выделяют какую-либо рабочую поверхность, например, стол или станок. Эти дополнительные источники называются местным освещением. При этом, если использовать только местное освещение, то это будет сильно влиять на утомляемость, а следствием будет снижение работоспособности, кроме этого, возможны аварии и несчастные случаи на производстве.

Рабочее, дежурное и аварийное освещение

Если рассматривать классификацию искусственных источников с точки зрения функционального назначения, то можно выделить следующие группы:

  • Рабочее;
  • Дежурное;
  • Аварийное.

Теперь немного подробнее о каждом виде. Рабочее освещение есть везде, где это необходимо для поддержания работоспособности людей или для освещения пути для идущего транспорта. Второй класс освещения начинает функционировать после рабочего времени. Последняя группа нужна для поддержания работы производства в случае отключения основного (рабочего) источника света, оно минимально, но способно временно заменить рабочее освещение.

Лампа накаливания

В наше время для освещения производственных участков используют лампы накаливания следующих видов:

  • Галогенные.
  • Газоразрядные.

И что же все-таки такое лампа накаливания? Первое, на что стоит обратить свое внимание, – то, что она является электрическим источником, а свет мы видим благодаря раскаленному телу, называемому телом накала. Ранее (в девятнадцатом веке) тело накала изготавливалось из такого вещества, как вольфрам, или из сплава на его основе. Сейчас же его изготавливают из более доступного углеродного волокна.

Типы, преимущества и недостатки

источники света естественные и искусственные примеры

Сейчас промышленные предприятия выпускают большое число разнообразных ламп накаливания, среди которых наиболее популярны:

  • Вакуумные.
  • Лампы с криптоновым наполнением.
  • Биспиральные.
  • Наполненные смесью газов аргона и азота.

Теперь разберем последний вопрос, который касается ламп накаливания, а именно преимущества и недостатки. Плюсы: они недорогие в производстве, имеют небольшой размер, если их включить, то не нужно ждать пока разгорится, в производстве ламп накаливания не используется токсичные компоненты, они работают как на постоянном, так и на переменном токе, возможно использование регулятора яркости, хорошая бесперебойная работа даже при очень низких температурах. Несмотря на такое большое количество преимуществ, есть все-таки и минусы: они не сильно ярко светят, свет имеет желтоватый отлив, сильно нагреваются во время работы, что ведет иногда к пожарам при соприкосновении с текстильным материалом.

Газоразрядная лампа

Все они делятся на лампы высокого и низкого давления, большинство из них работает на парах ртути. Именно они вытеснили лампы накаливания, к которым мы так сильно привыкли, но газоразрядные лампы имеют просто массы минусов, один из которых уже нами сказан, а именно возможность отравится ртутью, также сюда можем отнести шумы, мерцание, что ведет к более быстрой утомляемости, линейный спектр излучения и так далее.

Такие лампы могут нам служить до двадцати тысяч часов, конечно, если колба цела, а свет, излучаемый ей, имеет либо теплый, либо нейтрально белый цвет.

Использование искусственных источников света довольно распространено, например, газоразрядные лампы очень часто и по сей день используются в магазинах или офисах, в декоративном или художественном освещении, кстати сказать, профессиональное световое оборудование, также не обошлось без газоразрядной лампы.

Сейчас производство газоразрядных ламп очень распространено, что и влечет за собой большое количество видов, один из самых популярных мы рассмотрим прямо сейчас.

Люминесцентная лампа

Как уже говорилось это один из видов газоразрядной лампы. Стоит отметить то, что их часто используют для основного источника света, люминесцентные лампы намного мощнее ламп накаливания и при этом они потребляют одинаково энергии. Раз мы уже начали сравнение с лампами накаливания, то будет уместным и следующий факт – срок службы люминесцентных может превышать в двадцать раз срок ламп накаливания.

Что касается их разновидностей, то чаще используют ртутную лампу, напоминающую трубку, а внутри и находятся пары ртути. Это очень экономичный источник света, который распространен в общественных заведениях (школах, больницах, офисах и так далее).

Источники света естественные и искусственные, примеры которых мы рассмотрели, просто необходимы для человека и других живых существ нашей планеты. Естественные источники не дают нам потеряться во времени, а искусственные заботятся о нашем здоровье и благополучии на предприятиях, уменьшая процент аварий и несчастных случаев.

fb.ru

Источники света — это… Что такое Источники света?

        излучатели электромагнитной энергии в видимой (или оптической, т. е. не только видимой, но и ультрафиолетовой и инфракрасной) области спектра. Естественными И. с. являются Солнце, Луна, звёзды, атмосферные электрические разряды и др., искусственными — устройства, превращающие энергию любого вида в энергию видимых (или оптических) излучений.

         Различают тепловые И. с., в которых свет возникает при нагревании тел до высокой температуры, и люминесцентные, в которых свет возникает в результате превращения тех или иных видов энергии непосредственно в оптическое излучение, независимо от теплового состояния излучающего тела. Искусственные И. с. могут подразделяться: по роду используемой энергии на химические, электрические, радиоактивные и др., по назначению на осветительные, сигнальные и т. п. Каждый из типов, в свою очередь, может классифицироваться по различным дополнительным признакам, например по конструктивно-технологическим, эксплуатационным и др.

         Первые искусственные И. с. (костёр, лучина, факел) появились в глубокой древности. До конца 19 в. применялись в основном тепловые И. с., основанные на сжигании горючих веществ (свечи, масляные и керосиновые лампы, калильные сетки). Излучение в них создаётся раскалёнными в пламени мельчайшими частицами твёрдого углерода или калильными сетками. Они дают непрерывный спектр излучения. Их световая отдача очень мала и не превышает 1 лм/вт (теоретический предел для белого света около 250 лм/вт).

         В конце 19 в. появились первые практически пригодные электрические И. с., в создание которых большой вклад внесли русские учёные П. Н. Яблочков, В. Н. Чиколев, А. Н. Лодыгин и др. С начала 20 в. электрическая Лампа накаливания благодаря экономичности, гигиеничности и удобству в эксплуатации начинает быстро и повсеместно вытеснять И. с., основанные на сжигании. Современная электрическая лампа накаливания — тепловой И. с., в котором излучение создаётся спиралью из вольфрамовой проволоки, накалённой до высокой температуры (около 3000 К) проходящим через неё электрическим током. Лампы накаливания — наиболее массовые И. с. Их светоотдача составляет 10—30 лм/вт.          Начиная с 30-х гг. 20 в. получают распространение Газоразрядные источники света, в которых используется излучение электрического разряда в инертных газах или в парах различных металлов, особенно ртути. По принципу действия они относятся к люминесцентным И. с. или И. с. смешанного излучения, т. е. люминесценции и теплового. Благодаря более высокому кпд излучения и большему разнообразию спектра и других характеристик, чем у ламп накаливания, они находят применение для освещения, сигнализации, рекламы (см. Газосветная трубка) и других целей. Особенно широко для освещения применяются люминесцентные лампы (См. Люминесцентная лампа), в которых ультрафиолетовое излучение ртутного разряда с помощью люминофоров (См. Люминофоры) преобразуется в видимое; светоотдача современных люминесцентных ламп белого света до 80—85 лм/вт. В так называемых электролюминесцентных панелях люминесценция порошкообразных люминофоров, находящихся в среде диэлектрика, возникает под действием переменного электрического поля. По эффективности они близки к лампам накаливания и применяются главным образом как световые индикаторы, табло, декоративные элементы и т. д. В полупроводниковых И. с. люминесценция возникает при прохождении тока. Арсенид галлия, например, даёт инфракрасное излучение, фосфид галлия и карбид кремния — видимое и т. д. Эти И. с. применяются для специальных целей; кпд их пока невелик. В катодолюминесцентных И. с. люминофор возбуждается быстрыми электронами (индикаторные радиолампы, электронно-оптические преобразователи (См. Электроннооптический преобразователь), электроннолучевые трубки (См. Электроннолучевая трубка) и т. д.).          В радиоизотопных И. с. люминофор возбуждается продуктами радиоактивного распада некоторых изотопов, например трития. Эти И. с. не требуют внешнего источника энергии, имеют большой срок службы, но дают небольшие световые потоки малой яркости. В принципе возможны хемилюминесцентные И. с., в которых люминесценция возникает в результате превращения энергии химических реакций в излучение (например, как при свечении, наблюдаемом в животном и растительном мире, — глубоководные рыбы, светлячки и др.). Подробнее см. ст. Люминесценция.          Совершенно новый тип И. с. представляют собой Лазеры, которые дают когерентные световые пучки высоких интенсивностей, исключительной однородности по частоте и острой направленности.

         Лит.: Иванов А. П., Электрические источники света, ч. 1—2, М.—Л., 1938—48; Шателен М. А., Русские электротехники второй половины XIX века, М.—Л., 1950; Рохлин Г. Н., Газоразрядные источники света, М.—Л., 1966; Квантовая электроника. Маленькая энциклопедия, М., 1969.

         Г. Н. Рохлин.

dic.academic.ru

Источники света — это… Что такое Источники света?

Искусственные источники света — технические устройства различной конструкции и различными способами преобразования энергии, основным предназначением которых является получение светового излучения (как видимого, так и с различной длиной волны, например, инфракрасного). В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света (например, триболюминесценция, радиолюминесценция, биолюминесценция и др.). В отличие от искусственных источников света, естественные источники света представляют собой природные материальные объекты: Солнце, Полярные сияния, светлячки, молнии и проч.

История развития искусственных источников света

Свеча

Древнее время — свечи, лучины и лампады

Самым первым из используемых людьми в своей деятельности источником света был огонь (пламя) костра. С течением времени и ростом опыта сжигания различных горючих материалов люди обнаружили, что большее количество света может быть получено при сжигании каких либо смолистых пород дерева, природных смол и масел и воска. С точки зрения химических свойств подобные материалы содержат больший процент углерода по массе и при сгорании сажистые частицы углерода сильно раскаляются в пламени и излучают свет. В дальнейшем при развитии технологий обработки металлов, развития способов быстрого зажигания с помощью огнива позволили создать и в значительной степени усовершенствовать первые независимые источники света, которые можно было устанавливать в любом пространственном положении, переносить и перезаряжать горючим. А также определенный прогресс в переработке нефти, восков, жиров и масел и некоторых природных смол позволил выделять необходимые топливные фракции: очищенный воск, парафин, стеарин, пальмитин, керосин и т. п. Такими источниками стали прежде всего свечи, факелы, масляные, а позже нефтяные лампы и фонари. С точки зрения автономности и удобства, источники света, использующие энергию горения топлив, очень удобны, но с точки зрения пожаробезопасности (открытое пламя), выделений продуктов неполного сгорания (сажа, пары топлива, угарный газ) представляют известную опасность как источник возгорания, и история знает великое множество примеров возникновения больших пожаров, причиной которых были масляные лампы и фонари, свечи и пр.

Газовые фонари

Дальнейший прогресс и развитие знаний в области химии, физики и материаловедения, позволили людям использовать также и различные горючие газы, отдающие при сгорании большее количество света. Газовое освещение было достаточно широко развито в Англии и ряде европейских стран. Особым удобством газового освещения было то, что появилась возможность освещения больших площадей в городах, зданий и др., за счёт того что газы очень удобно и быстро можно было доставить из центрального хранилища (баллонов) с помощью прорезиненых рукавов (шлангов), либо стальных или медных трубопроводов, а также легко отсекать поток газа от горелки простым поворотом запорного крана. Важнейшим газом для организации городского газового освещения стал так называемый «Светильный газ», производимый с помощью пиролиза жира морских животных (китов, дельфинов, тюленей и др.), а несколько позже производимый в больших количествах из каменного угля при коксовании последнего на газосветильных заводах. Одним из важнейших компонентов светильного газа, который давал наибольшее количество света, был бензол, открытый в светильном газе М. Фарадеем. Другим газом, который нашел значительное применение в газосветильной промышленности, был ацетилен, но ввиду его значительной склонности к возгоранию при относительно низких температурах и большим концентрационным пределам воспламенения, он не нашел широкого применения в уличном освещении и применялся в шахтерских и велосипедных «карбидных» фонарях. Другой причиной, затруднившей применение ацетилена в области газового освещения, была его исключительная дороговизна в сравнении с светильным газом. Параллельно с развитием применения самых разнообразных топлив в химических источниках света, совершенствовалась их конструкция и наиболее выгодный способ сжигания (регулирование притока воздуха), а также конструкция и материалы для усиления отдачи света и питания (фитили, газокалильные колпачки и др.). На смену недолговечным фитилям из растительных материалов(пенька) стали применять пропитку растительных фитилей борной кислотой (свечное производство), и волокна асбеста, а с открытием минерала монацита обнаружили его замечательное свойство при накаливании очень ярко светиться и способствовать полноте сгорания светильного газа. В целях повышения безопасности использования рабочее пламя стали ограждать металлическими сетками и стеклянными колпаками различной формы.

Появление электрических источников света

Дальнейший прогресс в области изобретения и конструирования источников света в значительной степени был связан с открытием электричества и изобретением источников тока. На этом этапе научно-технического прогресса стало совершенно очевидно, что необходимо для увеличения яркости источников света увеличить температуру области, излучающей свет. Если в случае применения реакций горения разнообразных топлив на воздухе температура продуктов сгорания достигает 1500—2300°С, то при использовании электричества температура может быть еще значительно увеличена. При нагревании электрическим током различных токопроводящих материалов с высокой температурой плавления они излучают видимый свет и могут служить в качестве источников света той или иной интенсивности. Такими материалами были предложены: графит (угольная нить), платина, вольфрам, молибден, рений и их сплавы. Для увеличения долговечности первых электрических источников света их рабочие тела (спирали и нити) стали размещать в специальных стеклянных баллонах (лампах), заполненных вакуумом или инертными либо неактивными газами (водород, азот, аргон и др.). При выборе рабочего материала конструкторы ламп руководствовались максимальной рабочей температурой нагреваемой спирали, и основное предпочтение было отдано углероду (Лампа Лодыгина, 1873 год) и в дальнейшем вольфраму. Вольфрам и его сплавы с рением и по настоящее время являются наиболее широкоприменяемыми материалами для изготовления электрических ламп накаливания, так как в наилучших условиях они способны быть нагреты до температур в 2800-3200°С. Параллельно с работой над лампами накаливания, в эпоху открытия и использования электричества также были начаты и значительно развиты работы по электродуговым источником света (свеча Яблочкова) и по источникам света на основе тлеющего разряда. Электродуговые источники света позволили реализовать возможность получения колоссальных по мощности потоков света (сотни тысяч и миллионы канделл), а источники света на основе тлеющего разряда — необычайно высокую экономичность. В настоящее время наиболее совершенные источники света на основе электрической дуги — криптоновые, ксеноновые и ртутные лампы, а на основе тлеющего разряда в инертных газах (гелий, неон, аргон, криптон и ксенон) с парами ртути и другие. Наиболее мощными и яркими источниками света в настоящее время являются лазеры. Очень мощными источниками света также являются разнообразные пиротехнические осветительные составы, применяемые для фотосъемки, освещения больших площадей в военном деле (фотоавиабомбы, осветительные ракеты и осветительные бомбы).

Типы источников света

Для получения света могут быть использованы различные формы энергии, и в этой связи можно указать на основные виды(по утилизации энергии) источников света.

  • Электрические: Электрический нагрев тел каления или плазмы. Джоулево тепло, вихревые токи, потоки электронов или ионов.
  • Ядерные: распад изотопов или деление ядер.
  • Химические: горение (окисление) топлив и нагрев продуктов сгорания или тел каления.
  • Термолюминесцентные: преобразование тепла в свет в полупроводниках.
  • Триболюминесцентные: преобразования механических воздействий в свет.
  • Биолюминесцентные: бактериальные источники света в живой природе.

Применение источников света

Источники света востребованы во всех областях человеческой деятельности — в быту, на производстве, в научных исследованиях и т.п. В зависимости от той или иной области применения к источникам света предъявляются самые разные технические, эстетические и экономические требования, и подчас отдается предпочтение тому или иному параметру источника света или сумме этих параметров.

Производство источников света

Опасные факторы источников света

Источники света той или иной конструкции очень часто сопровождаются наличием опасных факторов, главными из которых являются:

  • Открытое пламя.
  • Яркое световое излучение опасное для органов зрения и открытых участков кожи.
  • Тепловое излучение и наличие раскаленных рабочих поверхностей способных привести к ожогу.
  • Высокоинтенсивное световое излучение могущее привести к возгоранию, ожогу, и ранению — излучение лазеров, дуговых ламп и др.
  • Горючие газы или жидкости.
  • Высокое напряжение питания.
  • Радиоактивность.

Типовые параметры некоторых источников света

Сила света типовых источников:

Источник Мощность, Вт Примерная сила света, кд Цветовая температура, К КПД, % Наработка на отказ, ч
Свеча 1
Современная (2006 г) лампа накаливания 100 100 1000
Обычный светодиод 0.015 0.001 100 000
Сверхъяркий светодиод 2,4 12 100 000
Современная (2006 г) флуоресцентная(люминесцентная) лампа 20 100 15 000
Электродуговая ксеноновая лампа до 100 кВт
Лампа-вспышка до 10 кВт
Электродуговая ртутная лампа до 300 кВт
Ядерный взрыв (20Кт) 2,1*1021
Термоядерный взрыв (50Мт) 5,3*1024
Первый рубиновый лазер 0,1

См. также

Источники света в искусстве и архитектуре

Литература

Wikimedia Foundation. 2010.

dic.academic.ru

60 Характеристика источников света и светильников

В качестве источников света в современных осветительных установках используются лампы накаливания, галогенные и газоразрядные лампы.

В лампах накаливания свечение возникает при нагревании вольфрамовой нити накала до высокой температуры. Производятся различные типы ламп накаливания: вакуумные (НВ), газонаполненные (как правило, наполнителем является смесь аргона и азота) биспиральные (НБ), с криптоноксеноновым наполнением (НБК), зеркальные с диффузно отражающим слоем и другие.

Недостатками их являются низкая световая отдача (от 7 до 20 лм/Вт) при большой яркости нити накала, высокая температура поверхности колбы лампы, низкий КПД (10 – 13%), ограниченный срок службы (до 1000ч). Лампы дают непрерывный спектр, отличающийся от спектра дневного света преобладанием желтых и красных лучей, что в какой-то степени искажает восприятие человеком окружающих предметов.

Галогенные (галоидные) лампы накаливания наряду с вольфрамовой нитью содержат в колбе пары того или иного галогена, например, йода, что позволяет повысить температуру накала нити и практически исключить испарение вольфрама. Они имеют более продолжительный срок службы (до 3000 ч) и более высокую светоотдачу (до 40 лм/Вт).

Газоразрядные лампы излучают свет в результате электрического разряда в парах и газах. На внутреннюю поверхность стеклянной трубки наносится тонкий слой люминофора, который преобразует ультрафиолетовое излучение газового электрического разряда в видимый свет. Различают газоразрядные лампы низкого (люминесцентные) и высокого давления.

Люминесцентные лампы создают в помещениях искусственный свет, приближающийся по спектру к естественному, т.е. они более благоприятны для человека с гигиенической точки зрения. Лампы имеют высокую светоотдачу (до 110 лм/Вт), т.е. в 3 – 3, 5 раза экономичнее ламп накаливания и большой срок службы (до 14000ч). Свечение происходит со всей поверхности трубки, а следовательно, яркость и слепящее действие люминесцентных ламп значительно ниже ламп накаливания. Для освещения открытых пространств, территорий предприятий, улиц, высоких (более 6 м) производственных помещений используются газоразрядные лампы высокого давления. К ним относятся дуговые ртутные люминесцентные лампы типа ДРЛ, галогенные лампы ДРИ (дуговые ртутные с иодидами), ксеноновые лампы сверхвысокого давления ДКсТ (дуговые ксеноновые трубчатые), натриевые лампы ДНаТ (дуговые натриевые трубчатые) и т.д. Эти лампы в отличие от люминесцентных ламп низкого давления сосредотачивают в небольшом объеме значительную электрическую и световую мощность. Они выпускаются мощностью от 80 до 2000 Вт и могут эксплуатироваться при любой температуре окружающей среды.

Качественные показатели освещения в производственных помещениях во многом определяются правильным выбором осветительных приборов, представляющих собой совокупность источников света и осветительной арматуры. Основное назначение последней заключается в перераспределении светового потока источников света в требуемых для освещения направлениях, механическом креплении источников света и подводе к ним электроэнергии, а также защите ламп, оптических и электрических элементов от воздействия окружающей среды. Осветительная арматура предохраняет источники света от загрязнения и механических повреждений и изолирует их от внешней среды. Осветительный прибор ближнего действия называется светильником, а дальнего — прожектором.

Основными светотехническими характеристиками светильников являются КПД, защитный угол и кривая силы света.

Наиболее важной характеристикой светильников является КПД – отношение фактического светового потока светильника к световому потоку находящейся в нем лампы. Осветительная арматура поглощает часть светового потока, излучаемого источником, но благодаря рациональному перераспределению света в необходимом направлении увеличивается освещенность на рабочих местах.

Светильники прямого света направляют не менее 80% светового потока в нижнюю полусферу.

Светильники рассеянного света направляют в каждую полусферу от 40 до 60 % светового потока. Они обеспечивают хорошую равномерность освещения при полном отсутствии теней; их устанавливают в помещениях со светлыми потолками и стенами (административных, конструкторских, читальных залах и др.)

Светильники отраженного света посылают в верхнюю полусферу не менее 80% всего светового потока, обеспечивают мягкое освещение без резких теней. Их используют для освещения помещений общественного назначения.

По конструктивному исполнению светильники делятся на:

— открытые (лампа не отделена от внешней среды),

— защищенные (лампа отделена оболочкой, допускающей свободный проход воздуха),

— закрытые (оболочка защищает от проникновения внутрь крупной пыли),

— пыленепроницаемые (оболочка не допускает проникновения внутрь мелкодисперсной пыли),

— влагозащищенные,

— взрывозащищенные,

— взрывобезопасные.

studfile.net

Отправить ответ

avatar
  Подписаться  
Уведомление о