Восприятие света – Особенности восприятия цвета и света —
Особенности восприятия цвета и света —
Благодаря зрительному аппарату (глазу) и мозгу человек способен различать и воспринимать цвета окружающего его мира. Довольно нелегко сделать анализ эмоционального воздействия цвета, по сравнению с физиологическими процессами, появляющимися в результате световосприятия. Однако большое количество людей предпочитает определённые цвета и полагает, что цвет оказывает непосредственное воздействие на настроение. Трудно объяснить то, что многие люди находят сложным жить и работать в помещениях, где цветовое оформление кажется неудачным. Как известно, все цвета разделяют на тяжелые и лёгкие, сильные и слабые, успокаивающие и возбуждающие.
Строение человеческого глаза
Опытами ученых сегодня доказано, что у многих людей существует похожее мнение относительно условного веса цветов. Например, по их мнению, красный является самым тяжёлым, за ним следует оранжевый, потом синий и зелёный, затем — жёлтый и белый.
Строение человеческого глаза достаточно сложное:
сосудистая оболочка;
зрительный нерв;
сетчатка;
стекловидное тело;
ресничный поясок;
хрусталик;
передняя камера глаза, наполненная жидкостью;
зрачок;
радужная оболочка;
роговица.
Когда человек наблюдает объект, то отраженный свет сначала попадает на его роговицу, затем проходит через переднюю камеру, и отверстие в радужной оболочке (зрачок). Свет попадает на сетчатку глаза, но прежде он проходит через хрусталик, который может изменять свою кривизну, и стекловидное тело, где появляется уменьшенное зеркально-шарообразное изображение видимого объекта.
Для того, чтобы полосы на французском флаге казались одинаковой ширины на судах их делают в пропорции 33:30:37
На сетчатке глаза расположены два вида светочувствительных клеток (фоторецепторов), которые при освещении изменяют все световые сигналы. Они также называются колбочками и палочками.
Их существует около 7 млн, и они распределены по всей поверхности сетчатки, за исключением слепого пятна и имеют малую светочувствительность. Кроме того, колбочки подразделяются на три вида, это чувствительные к красному свету, зелёному и синему, соответственно реагирующие лишь на синюю, зелёную и красную часть видимых оттенков. Если же передаются остальные цвета, например жёлтый, то возбуждаются два рецептора (красно- и зелёночувствительный). При таком значительном возбуждении всех трёх рецепторов появляется ощущение белого, а при слабом возбуждении напротив — серого цвета. Если возбуждения трёх рецепторов отсутствуют, то возникает ощущение чёрного цвета.
Можно привести также следующий пример. Поверхность объекта, имеющего красный цвет, при интенсивном освещении белым светом, поглощает синие и зелёные лучи, и отражает красные, а также зелёные. Именно благодаря разнообразию возможностей смешения световых лучей различных длин спектра, появляется такое многообразие цветовых тонов, из которых глаз отличает примерно 2 млн. Вот так колбочки обеспечивают глаз человека восприятием цвета.
На чёрном фоне цвета кажутся интенсивнее, по сравнению со светлым.
Палочки наоборот, имеют намного большую чувствительность, чем колбочки, а также чувствительны к синезелёной части видимого спектра. В сетчатке глаза расположено около 130 млн. палочек, которые в основном не передают цвета, а работают при небольших освещённостях, выступая аппаратом сумеречного зрения.
Цвет способен изменять представление человека о настоящих размерах предметов, а те цвета, которые кажутся тяжёлыми, заметно уменьшают такие размеры. Например, французский флаг, состоящий из трёх цветов, включает синюю, красную, белую вертикальные полосы одинаковой ширины. В свою очередь, на морских судах соотношение таких полос меняют в пропорции 33:30:37 для того, чтобы на большом расстоянии они казались равнозначными.
Огромное значение на усиление или ослабление восприятия глазом контрастных цветов имеют такие параметры как расстояние и освещение. Таким образом, чем больше расстояние между глазом человека и контрастной парой цветов, тем наименее активно они кажутся нам. Фон, на котором находится предмет определённого цвета, также воздействует на усиление и ослабление контрастов. То есть на чёрном фоне они кажутся интенсивнее, по сравнению с любым светлым.
Мы обычно не задумываемся о том, что есть свет. А между тем именно эти волны несут в себе большое количество энергии, которая используется нашим организмом. Нехватка света в нашей жизни не может не отразиться отрицательно для нашего организма. Не даром сейчас становится всё более популярным лечение, основанное на воздействие этих электромагнитных излучений (цветотерапия, хромотерапия, ауро-сома, цветовая диета, графохромотерапия и многое другое).
Что такое свет и цвет?
Свет — это электромагнитное излучение с длиной волны от 440 до 700 нм. Человеческий глаз воспринимает часть солнечного света и охватывает излучение с длиной волны от 0,38 до 0,78 микрон.
Световой спектр состоит из лучей очень насыщенного цвета. Свет распространяется со скоростью 186 000 миль в секунду (300 млн. километров в секунду).
Цвет — основной признак, по которому различаются лучи света, то есть это отдельные участки световой шкалы. Восприятие цвета формируется в результате того, что глаз, получив раздражение от электромагнитных колебаний, передаёт его в высшие отделы головного мозга человека. Цветовые ощущения имеют двойственную природу: они отражают свойства, с одной стороны, внешнего мира, а с другой — нашей нервной системы.
Минимальные значения соответствуют синей части спектра, а максимальные — красной части спектра. Зелёный цвет — находится в самой середине этой шкалы. В цифровом выражении цвета можно определить следующим образом:
красный — 0,78-9,63 микрон;
оранжевый — 0,63-0,6 микрон;
жёлтый — 0,6-0,57 микрон;
зелёный — 0,57-0,49; микрон
голубой — 0,49-0,46 микрон;
синий — 0,46-0,43 микрон;
фиолетовый — 0,43-0,38 микрон.
Белый свет — это сумма всех волн видимого спектра.
За пределами этого диапазона находятся ультрафиолетовые (УФ) и инфракрасные (ИК) световые волны, их человек зрительно уже не воспринимает, хотя они оказывают очень сильное воздействие на организм.
Характеристики цвета
Насыщенность — это интенсивность цвета.
Яркость — это количество световых лучей, отражённых поверхностью данного цвета.
Яркость определяется освещением, то есть количеством отражённого светового потока.
Для цветов характерно свойство перемешиваться между собой и тем самым давать новые оттенки.
На усиление или ослабление восприятия человеком контрастных цветов влияют расстояние и освещение. Чем больше расстояние между контрастной парой цветов и глазом, тем менее активно они выглядят и наоборот. Окружающий фон так же влияет на усиление или ослабление контрастов: на чёрном фоне они сильнее, чем на любом светлом.
Все цвета делятся на следующие группы
Первичные цвета: красный, жёлтый и синий.
Вторичные цвета, которые образовываются посредством соединения между собой первичных цветов: красный + жёлтый = Оранжевый, жёлтый + синий = зелёный. Красный + синий = фиолетовый. Красный + жёлтый + синий = коричневый.
Третичные цвета — это те цвета, которые были получены посредством смешения вторичных цветов: оранжевый + зелёный = жёлто-коричневый. Оранжевый + фиолетовый = красно-коричневый. Зелёный + фиолетовый = сине-коричневый.
Польза цвета и света
Чтобы восстановить здоровье, нужно передать в организм соответствующую информацию. Эта информация закодирована в цветовых волнах. Одной из главных причин большого числа, так называемых, болезней цивилизации — гипертонии, высокого уровня холестерина, депрессии, остеопороза, диабета и т. д. может быть назван недостаток естественного света.
Меняя длину световых волн, можно передавать клеткам именно ту информацию, которая необходима для восстановления их жизнедеятельности. Цветотерапия и направлена на то, чтобы организм получил не хватающую ему цветовую энергию.
Ученые до сих пор не пришли к единому мнению о том, как свет проникает в тело человека и воздействует на него.
Действуя на радужку глаза, цвет возбуждает определённые рецепторы. Те, кто хоть однажды проходил диагностику по радужной оболочке глаза, знает, что по ней можно «прочитать» болезнь любого из органов. Оно и понятно, ведь «радужка» рефлекторно связана со всеми внутренними органами и, разумеется, с мозгом. Отсюда нетрудно догадаться, что тот или иной цвет, действуя на радужную оболочку глаза, тем самым рефлекторно воздействует и на жизнедеятельность органов нашего тела.
Возможно, свет проникает через сетчатку глаза и стимулирует гипофиз, который в свою очередь стимулирует тот или иной орган. Но тогда не понятно, почему полезен такой метод как цветопунктура отдельных секторов человеческого тела.
Вероятно, наше тело способно чувствовать эти излучения с помощью рецепторов кожного покрова. Это подтверждает наука радионика — согласно этому учению вибрации света вызывают вибрации в нашем организме. Свет вибрирует во время движения, наше тело начинает вибрировать во время энергетического излучения. Это движение можно увидеть на фотографиях Кирлиана, с помощью которых можно запечатлеть ауру.
Возможно, эти вибрации начинают воздействовать на мозг, стимулируя его и заставляя вырабатывать гормоны. В последствии эти гормоны попадают в кровь и начинают воздействовать на внутренние органы человека.
Так как все цвета различны по своей структуре, то не трудно догадаться, что и воздействие каждого отдельного цвета будет различным. Цвета разделяют на сильные и слабые, успокаивающие и возбуждающие, даже на тяжёлые и легкие. Красный был признан самым тяжёлым, за ним шли равные по весу цвета: оранжевый, синий и зелёный, затем — жёлтый и последним — белый.
Общее влияние цвета на физическое и психическое состояние человека
На протяжении многих столетий у людей по всему миру складывалась определённая ассоциация определённым цветом. Например, римляне и египтяне соотносили чёрный цвет с печалью и скорбью, белый цвет — с чистотой, однако в Китае и Японии белый цвет — символ скорби, а вот у населения Южной Африки цветом печали был красный, в Бирме напротив, печаль ассоциировалась с жёлтым, а в Иране — с синим.
Влияние цвета на человека достаточно индивидуально, и зависит также от определённого опыта, например от метода подбора цвета определённых торжеств или же повседневной работы.
В зависимости от времени воздействия на человека, либо количества занимаемой цветом площади, он вызывает положительные или отрицательные эмоции, и влияет на его психику. Глаз человека способен распознавать 1,5 миллиона цветов и оттенков, а цвета воспринимаются даже кожей, воздействуют и на людей, лишённых зрения. В процессе исследований, проведённых учёными в Вене, имели место испытания с завязанными глазами. Людей ввели в комнату с красными стенами, после чего их пульс увеличился, затем их поместили в помещение с жёлтыми стенами, причём пульс резко нормализовался, а в комнате с синими стенами, он заметно понизился. Кроме того, заметное воздействие на цветовосприятии и снижении цветовой чувствительности оказывает возраст и пол человека. До 20-25 восприятие возрастает, а после 25 уменьшается по отношению к определённым оттенкам.
Исследования, имевшие место в американских университетах доказали, что основные цвета, преобладающие в детской комнате, могут воздействовать на изменение давления у детей, снижать или повышать их агрессивность, причем у зрячих и незрячих. Можно сделать соответствующий вывод, что цвета могут оказывать негативное и позитивное воздействие на человека.
Восприятие цветов и оттенков можно сравнить с музыкантом, настраивающим свой инструмент. Все оттенки способны вызывать в душе человека неуловимые отклики и настроения, поэтому он и ищет резонанс колебаний цветовых волн с внутренними отголосками своей души.
Ученые разных стран мира утверждают, что красный цвет помогает вырабатыванию красных телец в печени, а также помогает скорейшему выведению ядов из организма человека. Полагают, что красный цвет способен уничтожать различные вирусы и значительно снижает воспаления в организме. Зачастую в специальной литературе встречается мысль о том, что любому органу человека присущи вибрации определённых цветов. Разноцветную окраску внутренностей человека можно встретить на древних китайских рисунках, иллюстрирующих методы восточной медицины.
Кроме того, цвета не только влияют на настроение и психическое состояние человека, но и приводят к некоторым физиологическим отклонениям в организме. Например, в помещении с красными или оранжевыми обоями заметно учащается пульс и повышается температура. В процессе окраски помещений выбор цвета обычно предполагает очень неожиданный эффект. Нам известен такой случай, когда хозяин ресторана, хотевший улучшить аппетит у посетителей, приказал покрасить стены в красный цвет. После чего аппетит гостей улучшился, однако чрезвычайно увеличилось количество разбитой посуды и число драк и происшествий.
Известно также, что цветом можно вылечить даже многие серьезные заболевания. К примеру, во многих банях и саунах благодаря определенному оборудованию существует возможность принимать целебные цветовые ванны.
energonom.ru
Особенности восприятия человека. Зрение | FernFlower Group
Человек не может видеть в полной темноте. Для того, чтобы человек увидел предмет, необходимо, чтобы свет отразился от предмета и попал на сетчатку глаза. Источники света могут быть естественные (огонь, Солнце) и искусственные (различные лампы). Но что представляет собой свет?
Согласно современным научным представлениям, свет представляет собой электромагнитные волны определенного (достаточно высокого) диапазона частот. Эта теория берет свое начало от Гюйгенса и подтверждается многими опытами (в частности, опытом Т. Юнга). При этом в природе света в полной мере проявляется карпускулярно-волновой дуализм, что во многом определяет его свойства: при распространении свет ведет себя как волна, при излучении или поглощении – как частица (фотон). Таким образом, световые эффекты, происходящие при распространении света (интерференция, дифракция и т.п.), описываются уравнениями Максвелла, а эффекты, проявляющиеся при его поглощении и излучении (фотоэффект, эффект Комптона) – уравнениями квантовой теории поля.
Упрощенно, глаз человека представляет собой радиоприемник, способный принимать электромагнитные волны определенного (оптического) диапазона частот. Первичными источниками этих волн являются тела, их излучающие (солнце, лампы и т.п.), вторичными – тела, отражающие волны первичных источников. Свет от источников попадает в глаз и делает их видимыми человеку. Таким образом, если тело является прозрачным для волн видимого диапазона частот (воздух, вода, стекло и т.п.), то оно не может быть зарегистрировано глазом. При этом глаз, как и любой другой радиоприемник, «настроен» на определенный диапазон радиочастот (в случае глаза это диапазон от 400 до 790 терагерц), и не воспринимает волны, имеющие более высокие (ультрафиолетовые) или низкие (инфракрасные) частоты. Эта «настройка» проявляется во всем строении глаза – начиная от хрусталика и стекловидного тела, прозрачных именно в этом диапазоне частот, и заканчивая величиной фоторецепторов, которые в данной аналогии подобны антеннам радиоприемников и имеют размеры, обеспечивающие максимально эффективный прием радиоволн именно этого диапазона.
Все это в совокупности определяет диапазон частот, в котором видит человек. Он называется диапазоном видимого излучения.
Видимое излучение — электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длиной волны приблизительно от 380 (фиолетовый) до 740 нм (красный). Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими частотами также называется видимым светом, или просто светом (в узком смысле этого слова). Наибольшую чувствительность к свету человеческий глаз имеет в области 555 нм (540 ТГц), в зелёной части спектра.
Белый свет, разделённый призмой на цвета спектра [4]
При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разным углом. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены световыми волнами одной длины (или очень узким диапазоном), называются спектральными цветами. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:
В спектре содержатся не все цвета, которые различает человеческий мозг и они образуются от смешения других цветов.[4]
Благодаря зрению мы получаем 90% информации об окружающем мире, поэтому глаз — один из важнейших органов чувств.
Глаз можно назвать сложным оптическим прибором. Его основная задача — «передать» правильное изображение зрительному нерву.
Строение глаза человека
Роговица — прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза — склерой.
Передняя камера глаза — это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.
Радужка — по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза. Радужка отвечает за цвет глаз (если он голубой — значит, в ней мало пигментных клеток, если карий — много). Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.
Зрачок — отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.
Хрусталик — «естественная линза» глаза. Он прозрачен, эластичен — может менять свою форму, почти мгновенно «наводя фокус», за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском. Хрусталик, как и роговица, входит в оптическую систему глаза. Прозрачность хрусталика глаза человека превосходна — пропускается большая часть света с длинами волн между 450 и 1400 нм. Свет с длиной волны выше720 нм не воспринимается. Хрусталик глаза человека почти бесцветен при рождении, но приобретает желтоватый цвет с возрастом. Это предохраняет сетчатку глаза от воздействия ультрафиолетовых лучей.
Стекловидное тело — гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.
Сетчатка — состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т.е. фотохимическая реакция.
Склера — непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.
Сосудистая оболочка — выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана. Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур. При заболеваниях сетчатки очень часто вовлекается в патологический процесс. В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.
Зрительный нерв — при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.[6]
Человек не рождается с уже развитым органом зрения: в первые месяцы жизни происходит формирование мозга и зрения, и примерно к 9 месяцам они способны почти моментально обрабатывать поступающую зрительную информацию. Для того чтобы видеть, необходим свет. [3]
Способность глаза воспринимать свет и распознавать различной степени его яркости называется светоощущением, а способность приспосабливаться к разной яркости освещения — адаптацией глаза; световая чувствительность оценивается величиной порога светового раздражителя.
Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Максимальная световая чувствительность достигается после достаточно длительной темновой адаптации. Её определяют под действием светового потока в телесном угле 50° при длине волны 500 нм (максимум чувствительности глаза). В этих условиях пороговая энергия света около 10−9 эрг/с, что эквивалентно потоку нескольких квантов оптического диапазона в секунду через зрачок.
Вклад зрачка в регулировку чувствительности глаза крайне незначителен. Весь диапазон яркостей, которые наш зрительный механизм способен воспринять, огромен: от 10−6 кд•м² для глаза, полностью адаптированного к темноте, до 106 кд•м² для глаза, полностью адаптированного к свету Механизм такого широкого диапазона чувствительности кроется в разложении и восстановлении фоточувствительных пигментов в фоторецепторах сетчатки — колбочках и палочках.
В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высоко чувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.
Нормализованные графики светочувствительности колбочек человеческого глаза S, M, L. Пунктиром показана сумеречная, «чёрно-белая» восприимчивость палочек.
В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.
Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета.
За цветовое зрение человека отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия.
У большинства млекопитающих таких генов только два, поэтому они имеют черно-белое зрение.
Чувствительный к красному свету опсин кодируется у человека геном OPN1LW.
Другие опсины человека кодируют гены OPN1MW, OPN1MW2 и OPN1SW, первые два из них кодируют белки, чувствительные к свету со средними длинами волны, а третий отвечает за опсин, чувствительный к коротковолновой части спектра.
Поле зрения — пространство, одновременно воспринимаемое глазом при неподвижном взоре и фиксированном положении головы. Оно имеет определенные границы, соответствующие переходу оптически деятельной части сетчатки в оптически слепую.
Поле зрения искусственно ограничивается выступающими частями лица — спинкой носа, верхним краем глазницы. Кроме того, его границы зависят от положения глазного яблока в глазнице. [8] Кроме этого, в каждом глазу здорового человека существует область сетчатки, не чувствительная к свету, которая называется слепым пятном. Нервные волокна от рецепторов к слепому пятну идут поверх сетчатки и собираются в зрительный нерв, который проходит сквозь сетчатку на другую её сторону. Таким образом, в этом месте отсутствуют световые рецепторы.[9]
На этом конфокальном микроснимке диск зрительного нерва показан черным, клетки, выстилающие кровеносные сосуды — красным, а содержимое сосудов — зеленым. Клетки сетчатки отобразились синими пятнами. [10]
Слепые пятна в двух глазах находятся в разных местах (симметрично). Этот факт, а так же то, что мозг корректирует воспринимаемое изображение, объясняет почему при нормальном использовании обоих глаз они незаметны.
Чтобы наблюдать у себя слепое пятно, закройте правый глаз и левым глазом посмотрите на правый крестик, который обведён кружочком. Держите лицо и монитор вертикально. Не сводя взгляда с правого крестика, приближайте (или отдаляйте) лицо от монитора и одновременно следите за левым крестиком (не переводя на него взгляд). В определённый момент он исчезнет.
Этим способом можно также оценить приблизительный угловой размер слепого пятна.
Прием для обнаружения слепого пятна [9]
Выделяют также парацентральные отделы поля зрения. В зависимости от участия в зрении одного или обоих глаз, различают монокулярное и бинокулярное поле зрения. В клинической практике обычно исследуют монокулярное поле зрения. [8]
Зрительный анализатор человека в нормальных условиях обеспечивает бинокулярное зрение, то есть зрение двумя глазами с единым зрительным восприятием. Основным рефлекторным механизмом бинокулярного зрения является рефлекс слияния изображения — фузионный рефлекс (фузия), возникающий при одновременном раздражении функционально неодинаковых нервных элементов сетчатки обоих глаз. Вследствие этого возникает физиологическое двоение предметов, находящихся ближе или дальше фиксируемой точки (бинокулярная фокусировка). Физиологичное двоение (фокус) помогает оценивать удалённость предмета от глаз и создает ощущение рельефности, или стереоскопичности, зрения.
При зрении одним глазом восприятие глубины (рельефной удалённости) осуществляется гл. обр. благодаря вторичным вспомогательным признакам удаленности (видимая величина предмета, линейная и воздушная перспективы, загораживание одних предметов другими, аккомодация глаза и т. д..). [1]
Проводящие пути зрительного анализатора
1 — Левая половина зрительного поля, 2 — Правая половина зрительного поля, 3 — Глаз, 4 — Сетчатка, 5 — Зрительные нервы, 6 — Глазодвигательный нерв, 7 — Хиазма, 8 — Зрительный тракт, 9 — Латеральное коленчатое тело, 10 — Верхние бугры четверохолмия, 11 — Неспецифический зрительный путь, 12 — Зрительная кора головного мозга.[2]
Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.[5]
Элементы сетчатки начинают формироваться на 6–10 неделе внутриутробного развития, окончательное морфологическое созревание происходит к 10–12 годам. В процессе развития организма существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, обеспечивающие черно-белое зрение. Количество колбочек невелико и они еще не зрелы. Распознавание цветов в раннем возрасте зависит от яркости, а не от спектральной характеристики цвета. По мере созревания колбочек дети сначала различают желтый, потом зеленый, а затем красный цвета (уже с 3 месяцев удавалось выработать условные рефлексы на эти цвета). Полноценно колбочки начинают функционировать к концу 3 года жизни. В школьном возрасте различительная цветовая чувствительность глаза повышается. Максимального развития ощущение цвета достигает к 30 годам и затем постепенно снижается.
У новорожденного диаметр глазного яблока составляет 16 мм, а его масса – 3,0 г. Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые 5 лет жизни, менее интенсивно – до 9-12 лет. У новорожденных форма глазного яблока более шаровидная, чем у взрослых, в результате в 90 % случаев у них отмечается дальнозоркая рефракция.
Зрачок у новорожденных узкий. Из-за преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки, в 6–8 лет зрачки становятся широкими, что увеличивает риск солнечных ожогов сетчатки. В 8–10 лет зрачок сужается. В 12–13 лет быстрота и интенсивность зрачковой реакции на свет становятся такими же, как у взрослого человека.
У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, его преломляющая способность выше. Это позволяет ребенку четко видеть предмет на меньшем расстоянии от глаза, чем взрослому. И если у младенца он прозрачный и бесцветный, то у взрослого человека хрусталик имеет легкий желтоватый оттенок, интенсивность которого с возрастом может усиливаться. Это не отражается на остроте зрения, но может повлиять на восприятие синего и фиолетового цветов.
Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет формируется в возрасте от 5 дней до 3–5 месяцев.
Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и уже в последнюю очередь – цвет.
Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение. Стереоскопическое зрение к 17–22 годам достигает своего оптимального уровня, причем с 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Поле зрения интенсивно увеличивается. К 7 годам его размер составляет приблизительно 80 % от размера поля зрения взрослого.[11,12]
После 40 лет наблюдается падение уровня периферического зрения, то есть происходит сужение поля зрения и ухудшение бокового обзора.
Примерно после 50 лет сокращается выработка слезной жидкости, поэтому глаза увлажняются хуже, чем в более молодом возрасте. Чрезмерная сухость может выражаться в покраснении глаз, рези, слезотечении под действием ветра или яркого света. Это может не зависеть от обычных факторов (частые напряжения глаз или загрязненность воздуха).
С возрастом человеческий глаз начинает воспринимать окружающее более тускло, с понижением контрастности и яркости. Также может ухудшиться способность распознавать цветовые оттенки, особенно близкие в цветовой гамме. Это напрямую связано с сокращением количества клеток сетчатой оболочки, воспринимающих оттенки цвета, контрастность, яркость. [14,15]
Некоторые возрастные нарушения зрения обусловлены пресбиопией, которая проявляется нечеткостью, размытостью картинки при попытке рассмотреть предметы, расположенные близко от глаз. Возможность фокусировки зрения на небольших предметах требует аккомодацию около 20 диоптрий (фокусировка на объекте в 50 мм от наблюдателя) у детей, до 10 диоптрий в возрасте 25 лет (100 мм) и уровни от 0,5 до 1 диоптрии в возрасте 60 лет (возможность фокусировки на предмете в 1-2 метрах). Считается, что это связано с ослаблением мышц, которые регулируют зрачок, при этом так же ухудшается реакция зрачков на попадающий в глаз световой поток. [13] Поэтому возникают трудности с чтением при тусклом свете и увеличивается время адаптации при перепадах освещенности.
Так же с возрастом начинает быстрее возникать зрительное утомление и даже головные боли.
Психология восприятия цвета — способность человека воспринимать, идентифицировать и называть цвета.
Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Первоначально исследования восприятия цвета проводились в рамках цветоведения; позже к проблеме подключились этнографы, социологи и психологи.
Зрительные рецепторы по праву считаются «частью мозга, вынесенной на поверхность тела». Неосознаваемая обработка и коррекция зрительного восприятия обеспечивает «правильность» зрения, и она же является причиной «ошибок» при оценке цвета в определенных условиях. Так, устранение «фоновой» засветки глаза (например, при разглядывании удаленных предметов через узкую трубку) существенно меняет восприятие цвета этих предметов.
Одновременное рассматривание одних и тех же несамосветящихся предметов или источников света несколькими наблюдателями с нормальным цветовым зрением, в одинаковых условиях рассматривания, позволяет установить однозначное соответствие между спектральным составом сравниваемых излучений и вызываемыми ими цветовыми ощущениями. На этом основаны цветовые измерения (колориметрия). Такое соответствие однозначно, но не взаимно-однозначно: одинаковые цветовые ощущения могут вызывать потоки излучений различного спектрального состава (метамерия).
Определений цвета, как физической величины, существует много. Но даже в лучших из них с колориметрической точки зрения часто опускается упоминание о том, что указанная (не взаимная) однозначность достигается лишь в стандартизованных условиях наблюдения, освещения и т. д., не учитывается изменение восприятия цвета при изменении интенсивности излучения того же спектрального состава (явление Бецольда — Брюкке), не принимается во внимание т. н. цветовая адаптация глаза и др. Поэтому многообразие цветовых ощущений, возникающих при реальных условиях освещения, вариациях угловых размеров сравниваемых по цвету элементов, их фиксации на разных участках сетчатки, разных психофизиологических состояниях наблюдателя и т. д., всегда богаче колориметрического цветового многообразия.
Например, в колориметрии одинаково определяются некоторые цвета (такие, как оранжевый или жёлтый), которые в повседневной жизни воспринимаются (в зависимости от светлоты) как бурый, «каштановый», коричневый, «шоколадный», «оливковый» и т. д. В одной из лучших попыток определения понятия Цвет, принадлежащей Эрвину Шрёдингеру, трудности снимаются простым отсутствием указаний на зависимость цветовых ощущений от многочисленных конкретных условий наблюдения. По Шредингеру, Цвет есть свойство спектрального состава излучений, общее всем излучениям, визуально не различимым для человека. [6]
В силу природы глаза, свет, вызывающий ощущение одного и того же цвета (например белого), то есть одну и ту же степень возбуждения трёх зрительных рецепторов, может иметь разный спектральный состав. Человек в большинстве случаев не замечает данного эффекта, как бы «домысливая» цвет. Это происходит потому, что хотя цветовая температура разного освещения может совпадать, спектры отражённого одним и тем же пигментом естественного и искусственного света могут существенно отличаться и вызывать разное цветовое ощущение.
Человеческий глаз воспринимает множество различных оттенков, однако есть «запрещенные» цвета, недоступные для него. В качестве примера можно привести цвет, играющий и желтыми, и синими тонами одновременно. Так происходит потому, что восприятие цвета в глазе человека, как и многое другое в нашем организме, построено на принципе оппонентности. Сетчатка глаза имеет особые нейроны-оппоненты: некоторые из них активизируются, когда мы видим красный цвет, и они же подавляются зеленым цветом. То же самое происходит и с парой желтый-синий. Таким образом, цвета в парах красный-зеленый и синий-желтый оказывают противоположное воздействие на одни и те же нейроны. Когда источник излучает оба цвета из пары, их воздействие на нейрон компенсируется, и человек не может увидеть ни один из этих цветов. Мало того, человек не только не способен увидеть эти цвета в нормальных обстоятельствах, но и представить их.
Увидеть такие цвета можно только в рамках научного эксперимента. Например, ученые Хьюитт Крэйн и Томас Пьянтанида из Стенфордского института в Калифорнии создали специальные зрительные модели, в которых чередовались полосы «спорящих» оттенков, быстро сменяющих друг друга. Эти изображения, зафиксированные специальным прибором на уровне глаз человека, показывались десяткам добровольцев. После эксперимента люди утверждали, что в определенный момент границы между оттенками исчезали, сливаясь в один цвет, с которым раньше им никогда не приходилось сталкиваться.
Человеческое зрение является трёхстимульным анализатором, то есть спектральные характеристики цвета выражаются всего в трех значениях. Если сравниваемые потоки излучения с разным спектральным составом производят на колбочки одинаковое действие, цвета воспринимаются как одинаковые.
В животном мире существуют четырёх- и даже пятистимульные цветовые анализаторы, поэтому цвета, воспринимаемые человеком одинаковыми, животным могут казаться разными. В частности, хищные птицы видят следы грызунов на тропинках к норам исключительно благодаря ультрафиолетовой люминесценции компонентов их мочи.
Похожая ситуация складывается и с системами регистрации изображений, как цифровыми, так и аналоговыми. Хотя в большинстве своём они являются трёхстимульными (три слоя эмульсии фотоплёнки, три типа ячеек матрицы цифрового фотоаппарата или сканера), их метамерия отлична от метамерии человеческого зрения. Поэтому цвета, воспринимаемые глазом как одинаковые, на фотографии могут получаться разными, и наоборот. [7]
www.fern-flower.org
Физиология цветоощущения / Сетчатка / Анатомия глаза / Главная страница
Цветоощущение (цветовая чувствительность, цветовое восприятие) — способность зрения воспринимать и преобразовывать световое излучение определённого спектрального состава в ощущение различных цветовых оттенков и тонов, формируя целостное субъективное ощущение («хроматичность», «цветность», колорит).
Цвет характеризуется тремя качествами:
- цветовым тоном, который является основным признаком цвета и зависит от длины световой волны;
- насыщенностью, определяемой долей основного тона среди примесей другого цвета;
- яркостью, или светлотой, которая проявляется степенью близости к белому цвету (степень разведения белым цветом).
Человеческий глаз замечает изменения цвета только в случае превышения так называемого цветового порога (минимального изменения цвета, заметного глазом).
Физическая сущность света и цвета
Светом или световым излучением называются видимые электромагнитные колебания.
Световые излучения подразделяются на сложные и простые.
Белый солнечный свет — сложное излучение, которое состоит из простых цветных составляющих – монохроматических (одноцветных) излучений. Цвета монохроматических излучений называют спектральными.
Если луч белого цвета разложить с помощью призмы в спектр, то можно увидеть ряд непрерывно изменяющихся цветов: темно-синий, синий, голубой, сине-зеленый, желто-зеленый, желтый, оранжевый, красный.
Цвет излучения определяется длиной волны. Весь видимый спектр излучений расположен в диапазоне длин волн от 380 до 720 нм (1 нм = 10-9 м, т.е. одной миллиардной доли метра).
Всю видимую часть спектра можно разделить на три зоны
- Излучением длиной волны от 380 до 490 нм называется синей зоной спектра;
- от 490 до 570 нм — зеленой;
- от 580 до 720 нм — красной.
Различные предметы человек видит окрашенными в разные цвета потому, что монохроматические излучения отражаются от них по-разному, в разных соотношениях.
Все цвета делятся на ахроматические и хроматические
- Ахроматические (бесцветные) — это серые цвета различной светлоты, белый и черный цвета. Ахроматические цвета характеризуются светлотой.
- Все остальные цвета – хроматические (цветные): синий, зеленый, красный, желтый и т.д. Хроматические цвета характеризуются цветовым тоном, светлотой и насыщенностью.
Цветовой тон — это субъективная характеристика цвета, которая зависит не только от спектрального состава излучений, попавших в глаз наблюдателя, но и от психологических особенностей индивидуального восприятия.
Светлота субъективно характеризует яркость цвета.
Яркость определяет силу света, излучаемую или отражаемую с единицы поверхности в перпендикулярном к ней направлении (единица яркости – кандела на метр, кд/м).
Насыщенность субъективно характеризует интенсивность ощущения цветового тона.
Поскольку в возникновении зрительного ощущения цвета участвует не только источник излучения и окрашенный предмет, но и глаз и мозг наблюдателя, то следует рассмотреть некоторые основные сведения о физической сущности процесса цветового зрения.
Восприятие цвета глазом
Известно, что глаз по устройству представляет собой подобие фотоаппарата, в котором сетчатка играет роль светочувствительного слоя. Излучения различного спектрального состава регистрируются нервными клетками сетчатки (рецепторами).
Рецепторы, обеспечивающие цветовое зрение, подразделяются на три типа. Каждый тип рецепторов по-разному поглощает излучение трех основных зон спектра — синей, зеленой и красной, т.е. обладает различной спектральной чувствительностью. Если на сетчатку глаза попадает излучение синей зоны, то оно будет воспринято только одним типом рецепторов, которые и передадут информацию о мощности этого излучения в мозг наблюдателя. В результате возникнет ощущение синего цвета. Аналогично будет протекать процесс и в случае попадания на сетчатку глаза излучений зеленой и красной зон спектра. При одновременном возбуждении рецепторов двух или трех типов будет возникать цветовое ощущение, зависящее от соотношения мощностей излучения различных зон спектра.
При одновременном возбуждении рецепторов, регистрирующих излучения, например, синей и зеленой зон спектра, может возникнуть световое ощущение, от темно-синего до желто-зеленого. Ощущение в большей степени синих оттенков цвета будет возникать в случае большей мощности излучений синей зоны, а зеленых оттенков — в случае большей мощности излучения зеленой зоне спектра. Равные по мощности излучения синей и зеленой зон вызовут ощущение голубого цвета, зеленый и красной зон — ощущение желтого цвета, красной и синей зон — ощущение пурпурного цвета. Голубой, пурпурный и желтый цвета называются в связи с этим двухзональными. Равные по мощности излучения всех трех зон спектра вызывают ощущение серого цвета различной светлоты, который превращается в белый цвет при достаточной мощности излучений.
Аддитивный синтез света
Это процесс получения различных цветов за счет смешивания (сложения) излучений трех основных зон спектра — синего, зеленого и красного.
Эти цвета называются основными или первичными излучениями адаптивного синтеза.
Различные цвета могут быть получены этим способом, например, на белом экране с помощью трех проекторов со светофильтрами синего (Blue), зеленого (Green) и красного (Red) цветов. На участках экрана, освещаемых одновременно из разных проекторов могут быть получены любые цвета. Изменение цвета достигается при этом изменением соотношения мощности основных излучений. Сложение излучений происходит вне глаза наблюдателя. Это одна из разновидностей аддитивного синтеза.
Еще одна разновидность аддитивного синтеза — пространственное смещение. Пространственное смещение основано на том, что глаз не различает отдельно расположенных мелких разноцветных элементов изображения. Таких, например, как растровые точки. Но вместе с тем мелкие элементы изображения перемещаются по сетчатке глаза, поэтому на одни и те же рецепторы последовательно воздействует различное излучение соседних разноокрашенных растровых точек. В связи с тем, что глаз не различает быстрой смены излучений, он воспринимает их как цвет смеси.
Субтрактивный синтез цвета
Это процесс получения цветов за счет поглощения (вычитания) излучений из белого цвета.
В субтрактивном синтезе новый цвет получают с помощью красочных слоев: голубого (Cyan), пурпурного (Magenta) и желтого (Yellow). Это основные или первичные цвета субтрактивного синтеза. Голубая краска поглощает (вычитает из белого) красные излучения, пурпурная — зеленые, а желтая — синие.
Для того, чтобы субтрактивным способом, получить, например, красный цвет нужно на пути белого излучения поместить желтый и пурпурный светофильтры. Они будут поглощать (вычитать) соответственно синие и зеленые излучения. Такой же результат будет получен, если на белую бумагу нанести желтую и пурпурные краски. Тогда до белой бумаги дойдет только красное излучение, которое отражается от нее и попадает в глаз наблюдателя.
- Основные цвета аддитивного синтеза — синий, зеленый и красный и
- основные цвета субтрактивного синтеза — желтый, пурпурный и голубой образуют пары дополнительных цветов.
Дополнительными называют цвета двух излучений или двух красок, которые в смеси делают ахроматический цвет: Ж + С, П + З, Г + К.
При аддитивном синтезе дополнительные цвета дают серый и белый цвета, так как в сумме представляют излучение всей видимой части спектра, а при субтрактивном синтезе смесь указанных красок дает серый и черный цвета, в виде того, что слои этих красок поглощают излучения всех зон спектра.
Рассмотренные принципы образования цвета лежат и в основе получения цветных изображений в полиграфии. Для получения полиграфических цветных изображений используют так называемые триадные печатные краски: голубую, пурпурную и желтую. Эти краски прозрачны и каждая из них, как уже было указано, вычитает излучение одной из зон спектра.
Однако, из-за неидеальности компонентов субтактивного синтеза при изготовлении печатной продукции используют четвертую дополнительную черную краску.
Из схемы видно, что если наносить на белую бумагу триадные краски в различном сочетании, то можно получить все основные (первичные) цвета как для аддитивного синтеза, так и для субтрактивного. Это обстоятельство доказывает возможность получения цветов необходимых характеристик при изготовлении цветной полиграфической продукции триадными красками.
Изменение характеристик воспроизводимого цвета происходит по-разному, в зависимости от способа печати. В глубокой печати переход от светлых участков изображения к темным осуществляется благодаря изменению толщины красочного слоя, что и позволяет регулировать основные характеристики воспроизводимого цвета. В глубокой печати образование цветов происходит субтрактивно.
В высокой и офсетной печати цвета различных участков изображения передаются растровыми элементами различной площади. Здесь характеристики воспроизводимого цвета регулируются размерами растровых элементов различного цвета. Ранее уже отмечалось, что цвета в этом случае образуются аддитивным синтезом – пространственным смешиванием цветов мелких элементов. Однако, там, где растровые точки различных цветов совпадают друг с другом и краски накладываются одна на другую, новый цвет точек образуется субтрактивным синтезом.
Оценка цвета
Для измерения, передачи и хранения информации о цвете необходима стандартная система измерений. Человеческое зрение может считаться одним из наиболее точных измерительных приборов, но оно не в состоянии ни присваивать цветам определенные числовые значения, ни в точности их запоминать. Большинство людей не осознает, насколько значительно воздействие цвета на их повседневную жизнь. Когда дело доходит до многократного воспроизведения, цвет, кажущийся одному человеку «красным», другим воспринимается как «красновато-оранжевый».
Методы, которыми осуществляется объективная количественная характеристика цвета и цветовых различий, называют колориметрическими методами.
Трехцветная теория зрения позволяет объяснить возникновение ощущений различного цветового тона, светлоты и насыщенности.
Цветовые пространства
Координаты цветаL (Lightness) — яркость цвета измеряется от 0 до 100%,
a — диапазон цвета по цветовому кругу от зеленого -120 до красного значения +120,
b — диапазон цвета от синего -120 до желтого +120
В 1931 г. Международная комиссия по освещению – CIE (Commission Internationale de L`Eclairage) предложила математически рассчитанное цветовое пространство XYZ, в котором весь видимый человеческим глазом спектр лежал внутри. В качестве базовых была выбрана система реальных цветов (красного, зеленого и синего), а свободный пересчет одних координат в другие позволял проводить различного рода измерения.
Недостатком нового пространства была его неравноконтрастность. Понимая это, ученые проводили дальнейшие исследования, и в 1960 г. Мак-Адам внес некоторые дополнения и изменения в существовавшее цветовое пространство, назвав его UVW (или CIE-60).
Затем в 1964 г. по предложению Г. Вышецкого было введено пространство U*V*W* (CIE-64).
Вопреки ожиданию специалистов предложенная система оказалась недостаточно совершенной. В одних случаях используемые при расчете цветовых координат формулы давали удовлетворительные результаты (в основном при аддитивном синтезе), в других (при субтрактивном синтезе) погрешности оказывались чрезмерными.
Это заставило CIE принять новую равноконтрастную систему. В 1976 г. были устранены все разногласия и на свет появились пространства Luv и Lab, базирующиеся на том же XYZ.
Эти цветовые пространства принимают за основу самостоятельных колориметрических систем CIELuv и CIELab. Считается, что первая система в большей мере отвечает условиям аддитивного синтеза, а вторая — субтрактивного.
В настоящее время цветовое пространство CIELab (CIE-76) служит международным стандартом работы с цветом. Основное преимущество пространства — независимость как от устройств воспроизведения цвета на мониторах, так и от устройств ввода и вывода информации. С помощью стандартов CIE могут быть описаны все цвета, которые воспринимает человеческий глаз.
Количество измеряемого цвета характеризуется тремя числами, показывающими относительные количества смешиваемых излучений. Эти числа называются цветовыми координатами. Все колориметрические методы основаны на трехмерности т.е. на своего рода объемности цвета.
Эти методы дают столь же надежную количественную характеристику цвета, как например измерение температуры или влажности. Отличие состоит лишь в количестве характеризующих значений и их взаимосвязи. Эта взаимосвязь трех основных цветных координат выражается в согласованном изменении при изменении цвета освещения. Поэтому «трехцветные» измерения проводятся в строго определенных условиях при стандартизованном белом освещении.
Таким образом, цвет в колориметрическом понимании однозначно определяется спектральным составом измеряемого излучения, цветовое же ощущение не однозначно определяется спектральным составом излучения, а зависит от условий наблюдения и в частности от цвета освещения.
Физиология рецепторов сетчатки
Восприятие цвета связано с функцией колбочковых клеток сетчатки глаза. Пигменты, содержащиеся в колбочках поглощают часть падающего на них света и отражающее остальную. Если какие-то спектральные компоненты видимого света поглощаются лучше других, то этот предмет мы воспринимаем как окрашенный.
Первичное различение цветов происходит в сетчатке- в палочках и колбочках свет вызывает первичное раздражение, которое превращается в электрические импульсы для окончательного формирования воспринимаемого оттенка в коре головного мозга.
В отличие от палочек, содержащих родопсин, колбочки содержат белок йодопсин. Йодопсин — общее название зрительных пигментов колбочек. Существует три типа йодопсина:
- хлоролаб («зелёный», GCP),
- эритролаб («красный», RCP) и
- цианолаб («синий», BCP).
В настоящее время известно, что светочувствительный пигмент йодопсин находящийся во всех колбочках глаза, включает в себя такие пигменты, как хлоролаб и эритролаб. Оба эти пигмента чувствительны ко всей области видимого спектра, однако первый из них имеет максимум поглощения, соответствующий жёлто-зеленой (максимум поглощения около 540 нм.), а второй жёлто-красной (оранжевой) (максимум поглощения около 570 нм.) частям спектра. Обращает на себя внимание тот факт, что их максимумы поглощения расположены рядом. Это не соответствуют принятым «основным» цветам и не согласуется с основными принципами трёхкомпонентной модели.
Третий, гипотетический пигмент, чувствительный к фиолетово-синей области спектра, заранее получивший название цианолаб, на сегодняшний день так и не найден.
Кроме того, найти какую-либо разницу между колбочками в сетчатке глаза не удалось, не удалось и доказать наличие в каждой колбочке только одного типа пигмента. Более того, было признано, что в колбочке одновременно находятся пигменты хлоролаб и эритролаб.
Неаллельные гены хлоролаба (кодируется генами OPN1MW и OPN1MW2) и эритролаба (кодируется геном OPN1LW) находятся в Х-хромосомах. Эти гены давно хорошо выделены и изучены. Поэтому чаще всего встречаются такие формы дальтонизма, как дейтеронопия (нарушение образования хлоролаба) (6 % мужчин страдают этим заболеванием) и протанопия (нарушение образования эритолаба) (2 % мужчин). При этом некоторые люди, имеющие нарушения восприятия оттенков красного и зелёного, лучше людей с нормальным восприятием цветов воспринимают оттенки других цветов, например, цвета хаки.
Ген цианолаба OPN1SW расположен в седьмой хромосоме, поэтому тританопия (аутосомная форма дальтонизма, при которой нарушено образования цианолаба) — редкое заболевание. Человек, больной тританопией, всё видит в зеленых и красных цветах и не различает предметы в сумерках.
Нелинейная двухкомпонентная теория зрения
По другой модели (нелинейная двухкомпонентная теория зрения С. Ременко), третий «гипотетический» пигмент цианолаб не нужен, приёмником синей части спектра служит палочка. Это объясняется тем, что при яркости освещения достаточной для различения цветов, максимум спектральной чувствительности палочки (благодаря выцветанию содержащегося в ней родопсина) смещается от зелёной области спектра к синей. По этой теории колбочка должна содержать в себе всего два пигмента с рядом расположенными максимами чувствительности: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра). Эти два пигмента давно найдены и тщательно изучены. При этом колбочка является нелинейным датчиком отношений, выдающем не только информацию о соотношении красного и зелёного цвета, но и выделяющем уровень жёлтого цвета в этой смеси.
Доказательством того, что приёмником синей части спектра в глазу является палочка, может служить и тот факт, что при цветоаномалии третьего типа (тританопия), глаз человека не только не воспринимает синей части спектра, но и не различает предметы в сумерках (куриная слепота), а это указывает именно на отсутствие нормальной работы палочек. Сторонники трёхкомпонентных теорий объяснить, почему всегда, одновременно с прекращением работы синего приёмника, перестают работать и палочки до сих пор не могут.
Кроме того, подтверждением этого механизма является и давно известный Эффект Пуркинье, суть которого заключается в том, что при наступлении сумерек, когда освещённость падает, красные цвета чернеют, а белые кажутся голубоватыми. Ричард Филлипс Фейнман отмечает, что: «это объясняется тем, что палочки видят синий край спектра лучше, чем колбочки, но зато колбочки видят, например, тёмно красный цвет, тогда как палочки его совершенно не могут увидеть».
В ночное время, когда поток фотонов недостаточен для нормальной работы глаза, зрение обеспечивают в основном палочки, поэтому ночью человек не может различать цвета.
На сегодняшний день придти к единому мнению о принципе цветовосприятия глазом пока не удалось.
eyesfor.me
Восприятие света и цвета
Как возникают изображения предметов на сетчатке? Лучи, отраженные от предметов, на которые направлено наш глаз, проходят через роговицу, жидкость, содержащаяся между ней и радужной оболочкой, хрусталик и стекловидное тело.
В каждом из этих сред они изменяют свое направление, т.е. преломляются. Основное значение для преломления света в глазу имеет хрусталик. У людей с нормальным зрением лучи, преломились в хрусталике, попадают на сетчатку и образуют на ней четкое изображение предметов. На рисунке 6 показано, как лучи от нижней точки предмета В, преломляясь, собираются на поверхности сетчатки в точке В1 лучи от верхней точки А собираются ниже в точке А1. Итак, изображение на сетчатке будет действительным, уменьшенным и перевернутым. В зрительных нервных центрах коры большого мозга формируется изображение таким, каким оно есть на самом деле.
Что такое аккомодация? Для четкого восприятия предметов необходимо, чтобы их изображение всегда попадал на сетчатку. Когда человек смотрит вдаль, предметы, расположенные на близком расстоянии, кажутся нечеткими. Если рассматривать близкие предметы, то нечетко видно отдаленные. Люди могут четко различать предметы, расположенные на разном расстоянии от глаза, благодаря способности хрусталика изменять свою кривизну. Способность глаза приспосабливаться к четкому видению предметов, находящихся на разном расстоянии, называют аккомодацией (от лат. АКОМ дате — приспособление к чему-либо) (рис. 7).
Наименьшее расстояние от глаза, с которой изображение еще воспринимается четко, для детей и подростков в норме составляет 7-10 см. С возрастом хрусталик теряет свою эластичность и аккомодационная способность глаза уменьшается.
Вспомните из курса физики, что такое свет.
Как мы воспринимаем свет? Лучи света попадают на сетчатку, состоящую из нескольких слоев клеток различных по форме и функциям (рис. 9, 10). Внешний слой клеток содержит черный пигмент, который поглощает световые лучи. В следующем слое имеются светочувствительные клетки — фоторецепторы: колбочки и палочки. Фоторецепторы соединяются с нервными клетками, образующими третий слой. Четвертый слой сетчатки состоит из крупных нервных клеток. их отростки образуют зрительный нерв, которым возбуждение передается в зрительной зоны коры большого мозга. Место, где зрительный нерв выходит из сетчатки, лишенное фоторецепторов, не воспринимает света и называется слепым пятном (рис. 8). Ее площадь (в норме) составляет от 2,5 до 6 мм2. Предметы, изображения которых попадает на участок, мы не видим.
В сетчатке человека насчитывают около 130 млн палочек и 7 млн. колбочек. Палочки расположены на периферии сетчатки. Они очень чувствительны к свету и поэтому возбуждаются даже при малом, так называемом сумеречном, освещении. Колбочки возбуждаются при ярком свете и малочувствительны к слабому освещению.
В центре сетчатки содержатся преимущественно колбочки. Это место называют желтым пятном (рис. 8). Желтое пятно, особенно его центральная ямка, считается местом наилучшего видения. В норме изображение всегда фокусируется на желтом пятне. При этом предметы, которые воспринимаются периферическим зрением, различаются хуже. Например, задержите взгляд на любом слове в середине строки, который вы читаете. Это слово будет хорошо видно, а слова, расположенные в начале и в конце строки, различаются значительно хуже.
В процессе преобразования энергии света в нервный импульс важную роль играет витамин А. Его недостаток вызывает значительное ухудшение сумеречного зрения, то есть так называемую куриную слепоту.
При возбуждении палочек возникает ощущение белого света (бесцветное ощущения), поскольку они воспринимают широкий спектр световых лучей.
Наш глаз способен воспринимать электромагнитные колебания с длиной волны от 320 до 760 нм (нм — нанометр — одна миллиардная доля метра). Лучи, длина волны которых короче 320 нм, называют ультрафиолетовыми, а с длиной волны больше 760 нм — инфракрасными.
Как мы воспринимаем цвет? Ли цвета мы воспринимаем? Мир разноцветный, и мы можем видеть его таким. Цвета мы воспринимаем с помощью колбочек, которые реагируют только на определенную длину волны.
Существует три типа колбочек. Колбочки первого типа реагируют преимущественно на красный цвет, другой — на зеленый и третьего — синий. Эти три цвета называют основными. Оптическим смешиванием основных цветов можно получить все цвета спектра и их оттенки. Если колбочки всех типов возбуждаются одновременно и одинаково, возникает ощущение белого цвета (рис. 11).
У некоторых людей цветовое зрение нарушено. Расстройство цветового зрения, или частичную цветовую слепоту, называют дальтонизмом. Название происходит от фамилии английского ученого Дж. Дальтона, который 1794 впервые описал это явление. Различают врожденный и приобретенный дальтонизм. Прирожденным (наследственным), собственно дальтонизмом, бывает, как правило, расстройство восприятия красного и зеленого цветов. Слепота на синий цвет является частью приобретенной. Расстройства цветового зрения объясняют отсутствием определенных колбочек в сетчатке глаза. Случается также частичный дальтонизм (неспособность воспринимать один из основных цветов). Дальтонизм наблюдается в 0,5% женщин и 5% мужчин. Люди, страдающие расстройствами цветового зрения, не могут работать на транспорте, в авиации и т.п.. Дальтонизм не лечится.
Как цвет влияет на эмоциональную сферу человека, его работоспособность? Известно, что один цвет успокаивает, другой раздражает. На этом основывается методика определения настроения человека. Еще немецкий поэт И. Гете писал о способности цвета создавать настроение: желтый — веселит и бодрит, зеленый — вмиротворюе, синий — вызывает грусть. Психологи доказали, что красный цвет приводит к цветовой усталости, а зеленый помогает ее снять. Цвет влияет на производительность труда человека. Гигиенисты установили, что зеленый и желтый цвета обостряют зрение, ускоряют зрительное восприятие, создают устойчивое ясное видение, снижают внутренне глазное давление, обостряют слух, способствуют нормальному кровообращению, т.е. в целом повышают работоспособность человека. Красный цвет действует противоположно. Эти данные используют дизайнеры при оформлении рабочих мест.
worldofscience.ru
Зрение — восприятие света | Физиология человека
Совершенно исключительное значение в жизни человека имеет орган зрения, позволяющий четко и полно знать обо всех предметах, окружающих организм. Через зрение мы получаем 90 % всей поступающей в мозг информации. Не случайно так огромна роль зрения в нашем труде.
Глаз часто уподобляют фотоаппарату. Действительно, здесь есть немалое внешнее сходство. Глаз также состоит, во-первых, из объектива, т. е. серии преломляющих линз, которые собирают световые лучи в одну точку и позволяют поместить изображение огромных предметов на небольших участках сетчатки. Во-вторых, глаз снабжен собственно светочувствительной эмульсией — специальными веществами, способными химически изменяться под действием света и тем самым посылать сигналы в мозг. Вещества эти помещаются в особым образом устроенных рецепторах сетчатки, называемых по их форме палочками и колбочками. Колбочки расположены лишь в центре сетчатки и обусловливают цветное зрение. Световые колебания разной частоты, т. е. разной длины волны, по-разному влияют на вещества колбочек, отчего и происходит восприятие различных цветов. Палочки рассеяны по всей сетчатке и чувствительны только к белому свету, но зато в гораздо большей степени, чем колбочки к отдельным цветам спектра. Поэтому в сумерках, когда восприятие цветов уже отсутствует, мы все еще различаем очертания предметов, но лишь, так сказать, в черно-белом изображении. Все они кажутся одинаково серыми. Веществом, распадающимся в палочках под действием света и тем посылающим сигналы в мозг, является так называемый зрительный пурпур, родопсин. Его составной частью природа сделала витамин А. Поэтому-то ночное зрение и страдает без данного витамина. Распадаясь на свету, родопсин в темноте восстанавливается. Чем больше его имеется в восстановленном состоянии, тем глаз чувствительнее к свету. Поэтому, побыв в темноте некоторое время, мы благодаря восстановлению значительной части родопсина начинаем различать предметы, ранее абсолютно неразличимые. Подобное приспособление глаза к условиям освещенности также относится к явлениям адаптации. После часа пребывания в темноте адаптация повышает светочувствительность глаза в 200 тысяч раз. А часто ли мы задумываемся об этом чудесном свойстве своего глаза! Добавим еще, что электрический сигнал, возникающий при распаде родопсина в палочках, соединенные с ними нервные клетки сетчатки усиливают в миллион раз, только тогда получается энергия, способная Дать нервный импульс, который устремляется в мозг.
Если взять кролика и, продержав его 3—4 часа в темноте (чтобы восстановить весь зрительный пурпур), показать ему на миг освещенный предмет, а затем, вновь в темноте, удалить глаз и подействовать на него квасцами, приостанавливающими дальнейший распад родопсина, можно на такой сетчатке увидеть изображение показанного предмета. Там, где подействовал свет и пурпур распался, сетчатка будет бледной, в остальных местах — розовой. Понятно, что если кролик успеет посмотреть на несколько предметов, опыт не удастся.
Вернемся теперь к первому отделу глаза — линзам, собирающим световые лучи в узкий пучок с фокусом на сетчатке. Главной линзой является хрусталик. Когда мы смотрим на далекий предмет, от которого идут почти параллельные лучи, хрусталик становится более плоским. От ближнего предмета идут расходящиеся лучи, которые надо преломить в большей степени, чтобы дать фокус в той же точке. Поэтому при рассматривании близкого предмета хрусталик становится более выпуклым. Эти изменения хрусталика называются аккомодацией. Ими управляют высшие отделы мозга. У некоторых людей хрусталик преломляет слишком сильно и фокус возникает не на сетчатке, а перед ней. Когда дело касается близких предметов, которые и требуют сильного преломления идущих от них лучей, это не мешает зрению. Далекие же предметы кажутся расплывчатыми, ибо их изображение на сетчатке оказывается не в фокусе. Такие люди получили название близоруких. Они уменьшают излишнюю выпуклость своего хрусталика за счет двояковогнутых линз — очков.
Существует и обратное состояние. Дело в том, что с возрастом хрусталик теряет способность аккомодировать, т. е. становится при необходимости более выпуклым. Для близоруких, у которых он и без того является слишком выпуклым, это не имеет значения: они остаются близорукими всю жизнь. При нормальном же зрении с возрастом понижается способность видеть вблизи мелкие предметы. В таких случаях говорят о дальнозоркости и исправляют ее очками с двояковыпуклыми линзами. Понятно, что вдаль эти люди видят не лучше, чем. в молодости, но, во всяком случае, ненамного хуже. Лишь в этом смысле их можно назвать дальнозоркими.
www.medical-enc.ru
ДА БУДЕТ СВЕТ!!! Психологическое восприятие освещения.: laconic_manner — LiveJournal
На днях посмотрела лекцию о психологическом восприятии освещения. Выступала Ольга Валле — дизайнер, психолог, руководитель московской дизайн-студии.
Очень интересно узнавать по каким законам работают вещи, которыми как практик пользуешься давно, даже не задумываясь о механизме процессов.
Все дизайнеры знают, что при построении сценариев освещения в интерьере очень важно правильно использовать теплоту света.
Потому что от температуры света зависит настроение пространства.
Вы не знали? Значит, вы — не настоящий дизайнер))
Не буду говорить сейчас о Кельвинах, их значении и величине.
Расскажу проще — весь свет условно можно поделить на теплый, холодный и нейтральный.
В теплом световом спектре преобладают красные и желтые оттенки. В пространстве, освещенном теплым светом человек чувствует себя уютнее и расслабленнее.
В холодном свете — преобладают синие и фиолетовые оттенки. В пространстве, которое освещается холодным светом, человек пребывает в состоянии бодрости и активности.
И сразу становится понятно, какой свет можно повесить над столом в гостиной, где семья собирается за ужином, а какой в рабочем кабинете, чтобы сотрудники взбодрились и энергично принялись за работу?
И я все это знала и использовала, как мне кажется — всегда. Ведь все просто — холодный свет для работы, теплый — для отдыха.
Зачем я все это рассказываю?
А вот недавно только я узнала сам механизм воздействия температуры света на наш организм. Он оказался простым и понятным.
Откуда берется психологическое восприятие света? Правильно, от природных биоритмов. Мы все живем по законам природы, заложенным в нас на генетическом уровне. И наш организм реагирует на искусственный свет так же как на настоящий, природный.
Самый теплый цвет — это свет свечи и костра. То есть свет открытого огня. Который зажигали, когда наступала темнота. Потом — свет закатов и рассветов. В кино и фотографии даже есть такой термин «золотой час». «Золотой час» — это промежуток времени в первый час после восхода солнца и в последний час перед его заходом. В этот час солнечный свет имеет удивительно мягкий и уютный золотисто-красный оттенок. Это освещение создает абсолютно волшебную атмосферу.
Далее по теплоте освещения идут позднее утро и ранний вечер. То есть человеческий организм за многие века запомнил: теплый свет — значит начало или конец светового дня, напрягаться не нужно, нужно расслабиться.
Чем выше поднимается солнце — тем холоднее становится температура света. 10-11 часов утра — освещение становится нейтрального цвета. Как раз — разгар дня, организм находится в состоянии бодрости и активности. Днем преобладает синий спектр — свет проходит через толщу воздушных слоев. Еще холоднее — тень при дневном свет, допустим на северной стороне леса или гор. Самый холодный свет — в зимний день.
Отсюда и разные эмоциональные состояния. Думаю на этом основаны и некоторые фильтры Инстаграм: они делают привлекательной любую фотографию, с помощью теплого света.
Интерьер строится по тем же законам, по которым строится природа. И настроение зависит от температуры света.
Теплый спектр — уютный, холодный — менее дружелюбный.
И применение того или иного света — зависит от задач, стоящих перед дизайнером.
Теплый свет используют для успокоения, расслабления. В жилых помещениях, в прохладном климате. Он подходит для отдыха, для застолий, для создания ощущения тепла. Замечали, как в кафе за столиком меняется атмосфера и настроение, когда официант приносит зажженную свечу?
Можно использовать теплый свет и стратегически — на важных переговорах ввести теплое освещение, для того чтобы успокоить и расслабить переговорщиков.
А еще, в комнате с теплым светом температура кажется на пару градусов выше. Это срабатывает психологическая составляющая.
Ольга Валле приводит английские интерьеры, как пример использования теплого света и теплой цветовой палитры для создания теплой атмосферы в холодном и дождливом английском климате.
Холодный спектр — применяется в рабочих и общественных помещениях, для концентрации и создания рабочей атмосферы. Для активности и сосредоточенности, он держит нас в тонусе. Его используют для создания ощущения прохлады, особенно в теплом климате.
Средиземноморские интерьеры построены на этом принципе — создать ощущение прохлады с помощью холодного света и холодной палитры цветов.
А еще есть один секрет. Цветовая температура влияет на цвет в интерьере. В теплом свете нет синего и фиолетового. От этого искажается передача зеленого и синего тонов в интерьере. Голубой цвет уходит в зеленый, синий цвет тускнеет, темносиний — чернеет, а фиолетовый уходит в красноватый.
В холодном спектре присутствуют синий и фиолетовый оттенки. От этого красные тона в интерьере уходят в малиновый и фиолетовый, оранжевый становится коричневым, а желтый — зеленоватым. И очень важно, чтобы цветовая гамма и освещение гармонировали между собой.
Потому что несоответствие теплого освещения и холодной цветовой гаммы, или наоборот, холодного света и теплых цветов — могут создать дисгармонию в интерьере. Мозг, на генетическом уровне, знает — что холодные цвета должны быть в холодном свете, а теплые- в теплом, и дает сигнал — с пространством что-то не так! И человек на бессознательном уровне чувствует дискомфорт.
P.S. Личный лайфхак: при теплом освещении на объекте может возникнуть не один казус, краска или текстиль могут оказаться не того цвета, как выглядели в магазине. Потому что в магазинах используют обычно холодный цвет. Мы же помним — холодный цвет предназначен для работы)) Поэтому все образцы нужно смотреть на месте!! Ведь даже дневной цвет в каждом пространстве может быть разным — в зависимости от стороны света, вида за окном, и количества неба в окне.
laconic-manner.livejournal.com
Психология восприятия света — Википедия
(эта статья, скорее всего, удалена из Википедии)
Основная статья: Психология восприятия
Психология восприятия света — способность зрительного анализатора воспринимать свет, а также различать его оттенки и яркость.
Свет и световая экспозиция влияют на физическое и психологическое здоровье человека, а также на его поведение и производительность. Адаптацию и воздействие света на организм человека изучает наука хронобиология.
За восприятие света отвечают фоторецепторы — палочки, которых больше всего расположено в отделах сетчатой оболочки. Как известно, колбочки отвечают за дневное зрение, палочки — за сумеречное (ночное). Также за восприятие света отвечает особое скопление клеток (ганглий) в человеческом глазу, которое реагирует на изменения света, передавая сигналы в нервную систему, что соответственно приводит к различной реакции организма. Свет влияет на эндокринную, иммунную, сердечно-сосудистую системы, обмен веществ, а также на эмоциональное и когнитивное состояние. При правильно подобранном освещении у человека улучшается общее состояние, а также повышается производительность. Нарушение правильного светового воздействия на протяжении значительного периода времени может привести к негативным последствиям для здоровья человека.[1] Существуют две характеристики световосприятия: порог раздражения — минимальный световой поток, который вызывает раздражение рецепторов сетчатки и порог различения — способность зрительного анализатора различать минимальную разницу в интенсивности света.[2]
- Световая адаптация является одной из главных способностей глаза — приспособление к усилению яркости света. Сам процесс адаптации длится приблизительно минуту. Чем ярче свет, тем длительнее происходит процесс адаптации. В первые секунды после усиления освещенности чувствительность резко снижается, и приходит в норму примерно через 50-70 секунд.
- Темновая адаптация — это способность зрительного органа приспосабливаться к уменьшению яркости. При понижении светового освещения светочувствительность сначала резко усиливается, но через 15-20 минут начинает ослабевать, а через час наступает полная темновая адаптация.
Освещение является одним из компонентов психологического влияния на человека. Для создания нужной атмосферы используются также звуковое и цветовое воздействие. Головной мозг, получая информацию об освещении, посылает сигнал нашему организму вырабатывать гормон, который называется мелатонин. Мелатонин — это рецептор, реагирующий на изменение освещения. Он генерирует информацию и помогает мозгу адаптироваться при смене освещения. Даже интенсивность освещения влияет на то, сколько мелатонина вырабатывается и создается. Чем больше воздействие света, тем больше мелатонина освобождается и наше тело становится полностью бодрствующим и в состоянии бета (активное состояние).[3] Уменьшение освещения означает снижение выработки гормона мелатонина, при этом организм естественным образом начинает тормозить. Вот почему некоторые люди не могут бодрствовать в слабо освещенной среде, даже если такое освещение кажется комфортным. В зависимости от яркости или же наоборот затененности помещения, человек находится в более возбужденном или расслабленном состоянии. Ещё одним важным аспектом светового воздействия является угол распространения света.
- Прямое освещение воздействует непосредственно на органы чувств и вызывает практически мгновенную реакцию организма, активизируя все процессы.
- Непрямое освещение создает, напротив, чувство спокойствия, ожидания или умиротворения, воздействуя на человеческое ощущение через эмоции и чувства. Может быть эффективно использовано, чтобы дать чувствам перерыв от того, чтобы их чрезмерно стимулировали. Таким образом, комбинация прямого и непрямого освещения создает баланс восприятия света.[4]
Под влиянием освещения может меняться и настроение человека. Так, при тусклом свете человек будет ощущать расслабленность и даже меланхолию, в то время как при ярком освещении организм будет вырабатывать больше мелатонина, а значит — будет находиться в более возбужденном состоянии, готовым к работе и активным действиям.
В связи с тем, что освещение напрямую влияет на здоровье и состояние человека, существует несколько принципов, по которым проектируются здания и отдельные помещения:
- Должен быть предусмотрен доступ дневного света, а также достаточное присутствие электрического освещения
- Планировка здания и коридоров должны быть разработаны с учетом максимального доступа естественного освещения
- В зависимости от потребности в освещении должен быть подобран спектр света и его интенсивность
- Тем не менее, перенасыщение светом может нести негативное влияние. Освещение и затемнение помещения должны быть сбалансированы
Освещение, цветовая гамма и обстановка комнаты в совокупности создают уникальную атмосферу, которая влияет на комфортность помещения и настроение находящихся в ней людей. С помощью правильно подобранного света можно визуально увеличить пространство или наоборот сократить его. Эти приемы строятся на интенсивности и оттенке света, а также на комбинировании естественного и электрического освещения. Дневной свет должен в достаточном количестве проникать в комнату. Большие окна пропускают больше дневного света, соответственно, визуально увеличивая пространство. Искусственное освещение дает больше возможностей для создания нужной атмосферы комнаты. Современные лампы имеют множество характеристик, такие как цветопередача — способность спектра лампы максимально правильно передавать цвета или цветовая температура, которая фактически описывает оттенок излучаемого лампой света.[5] Свет делится на теплый и холодный.
- Теплый свет — это белый с жёлтым оттенком, он характеризуется температурой ниже 3500°С.
- Холодный свет — это белый с оттенками голубого. Его цветовая температура 3500°С-5000°С.
- Существует ещё дневной свет, с температурой более 5000°С.
Человеческий глаз воспринимает свет разной температуры также по-разному. Теплый свет наиболее благоприятен для биоритма человека, так как он очень близок к естественному свету утреннего или вечернего солнца. Такое освещение отлично подойдет для создания уютной атмосферы в доме. Использование холодного света с высокой цветовой температурой уместно в рабочих помещениях, офисах, кабинетах. Они стимулируют деятельность человека и повышают его производительность.
См. также
www.wikiznanie.ru